Non-commutative IIA and IIB geometries from Q-branes and their intersection

Falk Haßler

Arnold Sommerfeld Center

LMU Munich
March 22, 2013

Spacetime geometry "seen" by point particles

- general relativity: spacetime = smooth manifold

Spacetime geometry "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations

Spacetime geometry "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations

Spacetime geometry "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Spacetime geometry "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Spacetime geometry "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Spacetime geometry "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Spacetime geometry "seen" by point particles

- general relativity: spacetime = smooth manifold

- fields are connected by gauge transformations
- geometric twists are possible

Strings have a different perspective:

- closed strings also wind around the torus \rightarrow T-duality

Strings have a different perspective:

- closed strings also wind around the torus \rightarrow T-duality

Strings have a different perspective:

- closed strings also wind around the torus \rightarrow T-duality

- new interesting properties like non-commutativity

Strings have a different perspective:

- closed strings also wind around the torus \rightarrow T-duality

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA

Strings have a different perspective:

- closed strings also wind around the torus \rightarrow T-duality

- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
- moduli stabilization
- effective cosmological constant
- spontaneous SUSY breaking

How to find these interesting backgrounds?

1. geometric string theory background with fluxes

How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

- well-known example: fibered tours with H-flux

How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

- well-known example: fibered tours with H-flux

How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

- well-known example: fibered tours with H-flux

How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

- well-known example: fibered tours with H-flux

How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

- well-known example: fibered tours with H-flux

- we looked at the sources of these fluxes

How to find these interesting backgrounds?

1. geometric string theory background with fluxes
2. T-Duality along different directions

- well-known example: fibered tours with H-flux

- we looked at the sources of these fluxes

NS 5-brane

- brane charged under the Kalb-Ramond field B

	uncompact				compact on torus $y^{i} \sim y^{i}+2 \pi$						
	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}		
NS 5	\otimes	\otimes	\otimes					\otimes	\otimes		\otimes

NS 5-brane

- brane charged under the Kalb-Ramond field B

	uncompact				compact on torus $y^{i} \sim y^{i}+2 \pi$					
	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
NS 5	\otimes	\otimes	\otimes					\otimes	\otimes	Q

- 5 spatial directions along the brane \otimes

NS 5-brane

- brane charged under the Kalb-Ramond field B

	uncompact				compact on torus $y^{i} \sim y^{i}+2 \pi$					
	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	${ }^{\prime}$
NS 5	\otimes	\otimes	\otimes					\otimes	\otimes	Q

- 5 spatial directions along the brane \otimes
- domain wall in uncompactified space

NS 5-brane

- brane charged under the Kalb-Ramond field B

	uncompact				compact on torus $y^{i} \sim y^{i}+2 \pi$					
	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	${ }^{\prime}$
NS 5	\otimes	\otimes	\otimes					\otimes	\otimes	Q

- 5 spatial directions along the brane \otimes
- domain wall in uncompactified space

$$
\begin{aligned}
d s_{N S 5}^{2} & =\sum_{i}\left(d x_{\|}^{i}\right)^{2}+h(r) \sum_{k}\left(d x_{\perp}^{k}\right)^{2} \quad e^{\phi}=\sqrt{h(r)} \\
H_{m n p} & =\epsilon_{m n p q} \partial_{q} h(r)
\end{aligned}
$$

NS 5-brane

- brane charged under the Kalb-Ramond field B

	uncompact				compact on torus $y^{i} \sim y^{i}+2 \pi$						
	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}		
NS 5	\otimes	\otimes	\otimes					\otimes	\otimes		,

- 5 spatial directions along the brane \otimes
- domain wall in uncompactified space

$$
\begin{aligned}
d s_{N S 5}^{2} & =\sum_{i}\left(d x_{\|}^{i}\right)^{2}+h(r) \sum_{k}\left(d x_{\perp}^{k}\right)^{2} \quad e^{\phi}=\sqrt{h(r)} \\
H_{m n p} & =\epsilon_{m n p q} \partial_{q} h(r)
\end{aligned}
$$

- parameterized by harmonic function h

NS 5-brane

- brane charged under the Kalb-Ramond field B

	uncompact				compact on torus $y^{i} \sim y^{i}+2 \pi$						
	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}		
NS 5	\otimes	\otimes	\otimes					\otimes	\otimes		,

- 5 spatial directions along the brane \otimes
- domain wall in uncompactified space

$$
\begin{aligned}
d s_{N S 5}^{2} & =\sum_{i}\left(d x_{\|}^{i}\right)^{2}+h(r) \sum_{k}\left(d x_{\perp}^{k}\right)^{2} \quad e^{\phi}=\sqrt{h(r)} \\
H_{m n p} & =\epsilon_{m n p q} \partial_{q} h(r)
\end{aligned}
$$

- parameterized by harmonic function h
- solution of NS effective action

Kaluza-Klein monopol

- T-Duality along y^{1} (isometry) with Buscher rules (Buscher, 1987)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
	\otimes	\otimes	\otimes					\bigotimes	\bigotimes	\bigotimes

Kaluza-Klein monopol

- T-Duality along y^{1} (isometry) with Buscher rules (Buscher, 1987)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$K K$	\otimes	\otimes	\bigotimes		\bullet			\bigotimes	\bigotimes	\bigotimes

Kaluza-Klein monopol

- T-Duality along y^{1} (isometry) with Buscher rules
(Buscher, 1987)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$K K$	\otimes	\otimes	\bigotimes		\bullet			\bigotimes	\bigotimes	\bigotimes

$$
d s_{K K \mathrm{int}}^{2}=\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{1}{h(r)}\left(d y+\sum_{i=2,3} A_{i} d y^{i}\right)^{2}+h(r) \sum_{i=2,3}\left(d y^{i}\right)^{2}
$$

Kaluza-Klein monopol

- T-Duality along y^{1} (isometry) with Buscher rules
(Buscher, 1987)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$K K$	\otimes	\bigotimes	\bigotimes		\bullet			\bigotimes	\bigotimes	\bigotimes

$d s_{K K \mathrm{int}}^{2}=\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{1}{h(r)}\left(d y+\sum_{i=2,3} A_{i} d y^{i}\right)^{2}+h(r) \sum_{i=2,3}\left(d y^{i}\right)^{2}$

- vanishing B-field and dilaton

Kaluza-Klein monopol

- T-Duality along y^{1} (isometry) with Buscher rules
(Buscher, 1987)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$K K$	\otimes	\bigotimes	\bigotimes		\bullet			\bigotimes	\bigotimes	\bigotimes

$d s_{K K \mathrm{int}}^{2}=\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{1}{h(r)}\left(d y+\sum_{i=2,3} A_{i} d y^{i}\right)^{2}+h(r) \sum_{i=2,3}\left(d y^{i}\right)^{2}$

- vanishing B-field and dilaton
- geometric background

Kaluza-Klein monopol

- T-Duality along y^{1} (isometry) with Buscher rules
(Buscher, 1987)
- vanishing B-field and dilaton
- geometric background
- A_{2} and A_{3} components of one-form gauge field

Kaluza-Klein monopol

- T-Duality along y^{1} (isometry) with Buscher rules
(Buscher, 1987)
- vanishing B-field and dilaton
- geometric background
- A_{2} and A_{3} components of one-form gauge field
- we choose gauge $A_{3}=0$

Kaluza-Klein monopol

- T-Duality along y^{1} (isometry) with Buscher rules
(Buscher, 1987)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$K K$	\otimes	\otimes	\bigotimes		\bullet			\bigotimes	\bigotimes	\bigotimes

$$
d s_{K K \mathrm{int}}^{2}=\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{1}{h(r)}\left(d y+\sum_{i=2,3} A_{i} d y^{i}\right)^{2}+h(r) \sum_{i=2,3}\left(d y^{i}\right)^{2}
$$

- vanishing B-field and dilaton
- geometric background
- A_{2} and A_{3} components of one-form gauge field
- we choose gauge $A_{3}=0$
- remaining component A_{2} ($=B_{y^{1}, y^{2}}$ of NS 5-brane) is connected with h

$$
\partial_{y^{3}} A_{2}=\partial_{x^{3}} h
$$

- T-Duality along y^{1} and y^{2} (isometries)

- T-Duality along y^{1} and y^{2} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{\prime}	y^{3}	y^{4}	y^{5}	y^{6}
	\otimes	\otimes	\otimes		\bullet	\bullet		\bigotimes	\bigotimes	\bigotimes

- T-Duality along y^{1} and y^{2} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{\prime}	y^{3}	y^{4}	y^{5}	y^{6}
	\bigotimes	\bigotimes	\bigotimes		\bullet	\bullet		\bigotimes	\bigotimes	\bigotimes

$$
\begin{aligned}
d s_{Q \mathrm{int}}^{2} & =\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{h(r)}{h(r)^{2}+A_{2}^{2}}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2} \\
e^{\phi} & =\sqrt{\frac{h(r)}{h(r)^{2}+A_{2}^{2}}} \quad \quad B_{y, y^{\prime}}=-\frac{A_{2}}{h(r)^{2}+A_{2}^{2}}
\end{aligned}
$$

- T-Duality along y^{1} and y^{2} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{\prime}	y^{3}	y^{4}	y^{5}	y^{6}
	\otimes	\otimes	\bigotimes		\bullet	\bullet		\bigotimes	\bigotimes	\bigotimes

$$
\begin{aligned}
d s_{Q \mathrm{int}}^{2} & =\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{h(r)}{h(r)^{2}+A_{2}^{2}}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2} \\
e^{\phi} & =\sqrt{\frac{h(r)}{h(r)^{2}+A_{2}^{2}}} \quad \quad B_{y, y^{\prime}}=-\frac{A_{2}}{h(r)^{2}+A_{2}^{2}}
\end{aligned}
$$

- non-geometric background:
already considered by
(E.Lozano-Tellechea, T. Ortin, 2001) (J. de Boer, M. Sigemori, 2010)

$$
A_{2}\left(x^{3}, y^{3}\right) \neq A_{2}\left(x^{3}, y^{3}+2 \pi\right)
$$

- T-Duality along y^{1} and y^{2} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{\prime}	y^{3}	y^{4}	y^{5}	y^{6}
	\otimes	\otimes	\bigotimes		\bullet	\bullet		\bigotimes	\bigotimes	\bigotimes

$$
\begin{aligned}
d s_{Q \mathrm{int}}^{2} & =\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{h(r)}{h(r)^{2}+A_{2}^{2}}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2} \\
e^{\phi} & =\sqrt{\frac{h(r)}{h(r)^{2}+A_{2}^{2}}} \quad \quad B_{y, y^{\prime}}=-\frac{A_{2}}{h(r)^{2}+A_{2}^{2}}
\end{aligned}
$$

- non-geometric background:

$$
A_{2}\left(x^{3}, y^{3}\right) \neq A_{2}\left(x^{3}, y^{3}+2 \pi\right)
$$

- solution of the NS effective action
- T-Duality along y^{1} and y^{2} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{\prime}	y^{3}	y^{4}	y^{5}	y^{6}
	\otimes	\otimes	\bigotimes		\bullet	\bullet		\bigotimes	\bigotimes	\bigotimes

$$
\begin{aligned}
d s_{Q \mathrm{int}}^{2} & =\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{h(r)}{h(r)^{2}+A_{2}^{2}}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2} \\
e^{\phi} & =\sqrt{\frac{h(r)}{h(r)^{2}+A_{2}^{2}}} \quad \quad B_{y, y^{\prime}}=-\frac{A_{2}}{h(r)^{2}+A_{2}^{2}}
\end{aligned}
$$

- non-geometric background:

$$
A_{2}\left(x^{3}, y^{3}\right) \neq A_{2}\left(x^{3}, y^{3}+2 \pi\right)
$$

- solution of the NS effective action
- for $h(r)=Q x^{3}$ we get T-fold with Q flux

Q-brane

- T-Duality along y^{1} and y^{2} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y	y^{1}	y^{3}	y^{4}	y^{5}	y^{6}
Q	\otimes	\otimes	\otimes		\bullet	\bullet		\otimes	\otimes	\otimes

$$
\begin{aligned}
d s_{Q_{\text {Qint }}} & =\sum_{i=4,5,6}\left(d y^{i}\right)^{2}+\frac{h(r)}{h(r)^{2}+A_{2}^{2}}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2} \\
e^{\phi} & =\sqrt{\frac{h(r)}{h(r)^{2}+A_{2}^{2}}} \quad \quad B_{y, y^{\prime}}=-\frac{A_{2}}{h(r)^{2}+A_{2}^{2}}
\end{aligned}
$$

- non-geometric background:

$$
A_{2}\left(x^{3}, y^{3}\right) \neq A_{2}\left(x^{3}, y^{3}+2 \pi\right)
$$

- solution of the NS effective action
- for $h(r)=Q x^{3}$ we get T-fold with Q flux

Field redefinition

- fields are not globally well defined

Field redefinition

- fields are not globally well defined
? how to evaluate integrals for compactification

Field redefinition

- fields are not globally well defined
? how to evaluate integrals for compactification
! field redefinition (D. Andriod, O. Hohm, M. Lartors, D. Lüst, P. Patalong,2012)

$$
\left(\tilde{G}^{-1}+\beta\right)^{-1} \equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B
$$

Field redefinition

- fields are not globally well defined
? how to evaluate integrals for compactification
! field redefinition (D. Andriod, O . Homm, M . Larfors, D . Lust, P . Patalang,2012)

$$
\begin{gathered}
\left(\tilde{G}^{-1}+\beta\right)^{-1} \equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B \\
d \tilde{s}_{Q \text { int }}^{2}=\frac{1}{h(r)}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2}+\sum_{i=4,5,6}\left(d y^{i}\right)^{2} \\
e^{\tilde{\phi}}=\frac{1}{\sqrt{h(r)}} \quad \beta^{y, y^{\prime}}=-A_{2}\left(y^{3}\right) \quad \text { and } \quad Q_{3}^{y, y^{\prime}}=\partial_{y^{3}} \beta^{y, y^{\prime}}=-\partial_{x^{3}} h
\end{gathered}
$$

Field redefinition

- fields are not globally well defined
? how to evaluate integrals for compactification
! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong,2012)

$$
\begin{gathered}
\left(\tilde{G}^{-1}+\beta\right)^{-1} \equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B \\
d \tilde{s}_{Q \mathrm{int}}^{2}=\frac{1}{h(r)}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2}+\sum_{i=4,5,6}\left(d y^{i}\right)^{2} \\
e^{\tilde{\phi}}=\frac{1}{\sqrt{h(r)}} \quad \beta^{y, y^{\prime}}=-A_{2}\left(y^{3}\right) \quad \text { and } \quad Q_{3}^{y, y^{\prime}}=\partial_{y^{3}} \beta^{y, y^{\prime}}=-\partial_{x^{3}} h
\end{gathered}
$$

- globally well defined

Field redefinition

- fields are not globally well defined
? how to evaluate integrals for compactification
! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong,2012)

$$
\begin{gathered}
\left(\tilde{G}^{-1}+\beta\right)^{-1} \equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B \\
d \tilde{s}_{Q \mathrm{int}}^{2}=\frac{1}{h(r)}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2}+\sum_{i=4,5,6}\left(d y^{i}\right)^{2} \\
e^{\tilde{\phi}}=\frac{1}{\sqrt{h(r)}} \quad \beta^{y, y^{\prime}}=-A_{2}\left(y^{3}\right) \quad \text { and } \quad Q_{3}^{y, y^{\prime}}=\partial_{y^{3}} \beta^{y, y^{\prime}}=-\partial_{x^{3}} h
\end{gathered}
$$

- globally well defined
- solution of the refined NS action

$$
\tilde{S}=\int \mathrm{d}^{10} x \sqrt{|\tilde{G}|} e^{-2 \tilde{\phi}}\left(\tilde{\mathcal{R}}+4(\partial \tilde{\phi})^{2}-\frac{1}{4} Q^{2}\right)
$$

Field redefinition

- fields are not globally well defined
? how to evaluate integrals for compactification
! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong,2012)

$$
\begin{gathered}
\left(\tilde{G}^{-1}+\beta\right)^{-1} \equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B \\
d \tilde{s}_{Q \text { int }}^{2}=\frac{1}{h(r)}\left(d y^{2}+d y^{\prime 2}\right)+h(r)\left(d y^{3}\right)^{2}+\sum_{i=4,5,6}\left(d y^{i}\right)^{2} \\
e^{\tilde{\phi}}=\frac{1}{\sqrt{h(r)}} \quad \beta^{y, y^{\prime}}=-A_{2}\left(y^{3}\right) \quad \text { and } \quad Q_{3}^{y, y^{\prime}}=\partial_{y^{3}} \beta^{y, y^{\prime}}=-\partial_{x^{3}} h
\end{gathered}
$$

- globally well defined
- solution of the refined NS action

$$
\tilde{S}=\int \mathrm{d}^{10} x \sqrt{|\tilde{G}|} e^{-2 \tilde{\phi}}\left(\tilde{\mathcal{R}}+4(\partial \tilde{\phi})^{2}-\frac{1}{4} Q^{2}\right)
$$

- simplifies calculations considerably

Backgrounds for IIA and IIB with fluxes

- backgrounds must be solutions of the NS action

Backgrounds for IIA and IIB with fluxes

- backgrounds must be solutions of the NS action

Backgrounds for IIA and IIB with fluxes

- backgrounds must be solutions of the NS action
- preserve maximal SUSY in non-compact dimensions

Backgrounds for IIA and IIB with fluxes

- backgrounds must be solutions of the NS action
- preserve maximal SUSY in non-compact dimensions

1. metric of background must have the form:

$$
d s^{2}=e_{\mathrm{AdS}_{4}^{2 A(y)}} d s_{4}^{2}+\underbrace{g_{i j} d y^{i} d y^{j}}_{\text {internal manifold } \mathcal{M}_{6}}
$$

Backgrounds for IIA and IIB with fluxes

- backgrounds must be solutions of the NS action
- preserve maximal SUSY in non-compact dimensions

1. metric of background must have the form:

$$
d s^{2}=e_{\mathrm{AdS}_{4}^{2 A(y)}}^{\mathrm{Ads}_{4}^{2}}+\underset{\text { internal manifold } \mathcal{M}_{6}}{ } g_{i j} d y^{i} d y^{j}
$$

2. $\mathrm{SU}(3)$ (IIA) or $\mathrm{SU}(2)$ (IIB) group structure on \mathcal{M}_{6}

Backgrounds for IIA and IIB with fluxes

- backgrounds must be solutions of the NS action
- preserve maximal SUSY in non-compact dimensions

1. metric of background must have the form:

$$
d s^{2}=\underset{\mathrm{AdS}_{4}^{2 A(y)}}{\mathrm{Ads}_{4}^{2}}+\underset{\text { internal manifold } \mathcal{M}_{6}}{g_{i j} d y^{i} d y^{j}}
$$

2. $\mathrm{SU}(3)$ (IIA) or $\mathrm{SU}(2)$ (IIB) group structure on \mathcal{M}_{6}
intersecting NS5-branes, KK-monopoles, Q-branes and R-branes

Backgrounds for IIA and IIB with fluxes

- backgrounds must be solutions of the NS action
- preserve maximal SUSY in non-compact dimensions

1. metric of background must have the form:

$$
d s^{2}=e^{e^{2 A(y)} d s_{4}^{2}}+\underset{\text { internal manifold } \mathcal{M}_{6}}{\text { AdS }_{4 i j} d y^{i} d y^{j}}
$$

2. $\mathrm{SU}(3)$ (IIA) or $\mathrm{SU}(2)$ (IIB) group structure on \mathcal{M}_{6}

4 intersecting NS 5-branes (IIA)

- intersecting branes via "harmonic superposition rules" (A.A. Tseytlin, 1996)

4 intersecting NS 5-branes (IIA)

- intersecting branes via "harmonic superposition rules"
(A.A. Tseytlin, 1996)
- complete background is $3 \times D 4,1 \times D 8$ and $4 \times N S 5$
(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
NS5	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bigotimes		\bigotimes	
NS5 $^{\prime}$	\bigotimes	\bigotimes	\bigotimes		\bigotimes			\bigotimes		\bigotimes
NS5" $^{\prime \prime}$	\bigotimes	\bigotimes	\bigotimes			\bigotimes		\bigotimes	\bigotimes	
NS5'"' $^{\prime \prime}$	\bigotimes	\bigotimes	\bigotimes			\bigotimes	\bigotimes			\bigotimes

4 intersecting NS 5-branes (IIA)

- intersecting branes via "harmonic superposition rules"
(A.A. Tseytlin, 1996)
- complete background is $3 \times D 4,1 \times D 8$ and $4 \times N S 5$
(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

4 intersecting NS 5-branes (IIA)

- intersecting branes via "harmonic superposition rules"
(A.A. Tseytlin, 1996)
- complete background is $3 \times \mathrm{D} 4,1 \mathrm{xD} 8$ and $4 \times \mathrm{NS} 5$
(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

- $h(r)=H x^{3}$ according to "harmonic superposition rules"

$$
H_{y^{2}, y^{4}, y^{6}}=H_{y^{2}, y^{5}, y^{3}}=H_{y^{1}, y^{6}, y^{3}}=H_{y^{1}, y^{5}, y^{4}}=H
$$

4 intersecting NS 5-branes (IIA)

- intersecting branes via "harmonic superposition rules"
(A.A. Tseytlin, 1996)
- complete background is $3 \times \mathrm{D} 4,1 \mathrm{xD} 8$ and $4 \times \mathrm{NS} 5$
(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

- $h(r)=H x^{3}$ according to "harmonic superposition rules"

$$
H_{y^{2}, y^{4}, y^{6}}=H_{y^{2}, y^{5}, y^{3}}=H_{y^{1}, y^{6}, y^{3}}=H_{y^{1}, y^{5}, y^{4}}=H
$$

- in near horizon limit $x^{3} \rightarrow 0$ we get $\operatorname{AdS}_{4} \times \mathrm{T}^{6}$

4 Q-branes (IIA)

- T-Duality along y^{1}, y^{2}, y^{3} and y^{4} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bigotimes		\bigotimes	
	\bigotimes	\bigotimes	\bigotimes		\bigotimes			\bigotimes		\bigotimes
	\bigotimes	\bigotimes	\bigotimes			\bigotimes		\bigotimes	\bigotimes	
	\bigotimes	\bigotimes	\bigotimes			\bigotimes	\bigotimes			\bigotimes

4 Q-branes (IIA)

- T-Duality along y^{1}, y^{2}, y^{3} and y^{4} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
Q	\bigotimes	\bigotimes	\bigotimes		\bigotimes	\bullet	\bigotimes	\bullet	\bigotimes	
Q^{\prime}	\bigotimes	\bigotimes	\bigotimes		\bigotimes	\bullet	\bullet	\bigotimes		\bigotimes
$Q^{\prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bullet	\bigotimes	\bigotimes	
$Q^{\prime \prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bigotimes	\bullet		\bigotimes

4 Q-branes (IIA)

- T-Duality along y^{1}, y^{2}, y^{3} and y^{4} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
Q	\otimes	\otimes	\otimes		\otimes	-	\otimes	\bullet	\otimes	
Q^{\prime}	\otimes	\otimes	\otimes		Q	\bullet	-	Q		\otimes
$Q^{\prime \prime}$	\otimes	Q	\otimes		-	Q	\bullet	Q	Q	
$Q^{\prime \prime}$	\otimes	Q	\otimes		-	\otimes	\otimes	\bullet		\otimes

- non-geometric configuration

4 Q-branes (IIA)

- T-Duality along y^{1}, y^{2}, y^{3} and y^{4} (isometries)

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
Q	\bigotimes	\bigotimes	\bigotimes		\bigotimes	\bullet	\bigotimes	\bullet	\bigotimes	
Q^{\prime}	\bigotimes	\bigotimes	\bigotimes		\bigotimes	\bullet	\bullet	\bigotimes		\bigotimes
$Q^{\prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bullet	\bigotimes	\bigotimes	
$Q^{\prime \prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bigotimes	\bullet		\bigotimes

- non-geometric configuration
- near horizon limit with $x=1+Q^{2}\left(\left(y^{5}\right)^{2}+\left(y^{6}\right)^{2}\right)$

$$
\begin{aligned}
& d s_{4 Q \mathrm{int}}=\frac{1}{x} \sum_{i=1}^{4}\left(d y^{i}\right)^{2}+\sum_{j=5,6}\left(d y^{j}\right)^{2} \\
& -B_{24}=B_{13}=\frac{Q y^{6}}{x} \quad B_{14}=B_{23}=\frac{Q y^{5}}{x}
\end{aligned}
$$

Field redefinition leads to

- \tilde{G} and β have the same form as g and B of 4 NS 5 -branes

Field redefinition leads to

- \tilde{G} and β have the same form as g and B of 4 NS 5 -branes
- globally well defined representation

Field redefinition leads to

- \tilde{G} and β have the same form as g and B of 4 NS 5 -branes
- globally well defined representation
- in near horizon limit: flat torus with four Q-fluxes

$$
Q_{6}^{24}=-Q_{6}^{13}=-Q_{5}^{14}=-Q_{5}^{23}=Q,
$$

and IIA superpotential

$$
W_{Q}=Q_{6}^{24} S T_{1} T_{2}+Q_{5}^{23} T_{1} T_{2} U_{1}+Q_{5}^{14} T_{1} T_{2} U_{2}+Q_{6}^{13} T_{1} T_{2} U_{3}
$$

1 H-flux, $1 Q$-flux and $2 f$-fluxes (IIA)

- T-Duality along y^{1} and y^{3}

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$\mathrm{NS} \mathrm{5}^{\prime}$	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bigotimes		\bigotimes	
KK^{\prime}	\bigotimes	\bigotimes	\bigotimes		\bigotimes			\bigotimes		\bigotimes
$Q^{\prime \prime}$	\bigotimes	\bigotimes	\bigotimes			\bigotimes		\bigotimes	\bigotimes	
$\mathrm{KK}^{\prime \prime \prime}$	\bigotimes	\bigotimes	\bigotimes			\bigotimes	\bigotimes			\bigotimes

1 H-flux, $1 Q$-flux and $2 f$-fluxes (IIA)

- T-Duality along y^{1} and y^{3}

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$\mathrm{NS} \mathrm{5}^{\prime}$	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bigotimes		\bigotimes	
KK^{\prime}	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bullet	\bigotimes		\bigotimes
$Q^{\prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bullet	\bigotimes	\bigotimes	
$\mathrm{KK}^{\prime \prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bigotimes			\bigotimes

- non-geometric background

1 H-flux, $1 Q$-flux and 2 f-fluxes (IIA)

- T-Duality along y^{1} and y^{3}

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$\mathrm{NS} \mathrm{5}^{5}$	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bigotimes		\bigotimes	
KK^{\prime}	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bullet	\bigotimes		\bigotimes
$Q^{\prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bullet	\bigotimes	\bigotimes	
$\mathrm{KK}^{\prime \prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bigotimes			\bigotimes

- non-geometric background
- BUT: field redefinition

$$
\left(\tilde{G}^{-1}+\beta\right)^{-1}=G+B
$$

does not give globally well defined \tilde{G} and β

1 H-flux, $1 Q$-flux and 2 f-fluxes (IIA)

- T-Duality along y^{1} and y^{3}

	x^{0}	x^{1}	x^{2}	x^{3}	y^{1}	y^{2}	y^{3}	y^{4}	y^{5}	y^{6}
$\mathrm{NS} \mathrm{5}^{\prime}$	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bigotimes		\bigotimes	
KK^{\prime}	\bigotimes	\bigotimes	\bigotimes		\bigotimes		\bullet	\bigotimes		\bigotimes
$Q^{\prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bullet	\bigotimes	\bigotimes	
$\mathrm{KK}^{\prime \prime \prime}$	\bigotimes	\bigotimes	\bigotimes		\bullet	\bigotimes	\bigotimes			\bigotimes

- non-geometric background
- BUT: field redefinition

$$
\left(\tilde{G}^{-1}+\beta\right)^{-1}=G+B
$$

does not give globally well defined \tilde{G} and β
We need a more general field redefinition with the corresponding fluxes and superpotentials!

Conclusions

- Q - and R-branes are sources of non-geometric fluxes

Conclusions

- Q - and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes

Conclusions

- Q - and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes
- construction of various IIA and IIB background with non-geometric fluxes by intersecting branes

Conclusions

- Q - and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes
- construction of various IIA and IIB background with non-geometric fluxes by intersecting branes
- their superpotential can be used to stabilize moduli in 4D

Conclusions

- Q - and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes
- construction of various IIA and IIB background with non-geometric fluxes by intersecting branes
- their superpotential can be used to stabilize moduli in 4D
- indication for new kind of field redefinition

Conclusions

- Q - and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes
- construction of various IIA and IIB background with non-geometric fluxes by intersecting branes
- their superpotential can be used to stabilize moduli in 4D
- indication for new kind of field redefinition

> When you are curious about Q - and R-branes, you can have a look at arXiv:1303.1413 (F. Hasier, D. Lüst, 2013)

