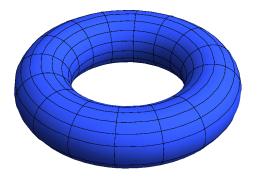
Non-commutative IIA and IIB geometries from Q-branes and their intersection

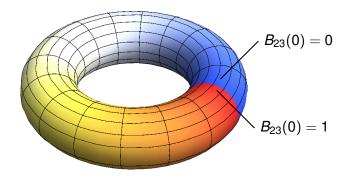
Falk Haßler

Arnold Sommerfeld Center LMU Munich

March 22, 2013

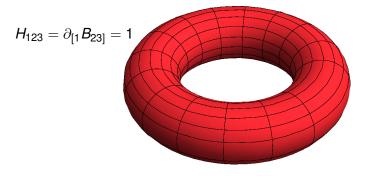


general relativity: spacetime = smooth manifold

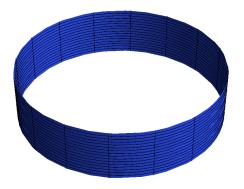


fields are connected by gauge transformations

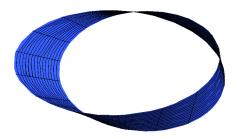
general relativity: spacetime = smooth manifold



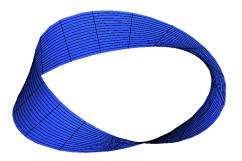
fields are connected by gauge transformations



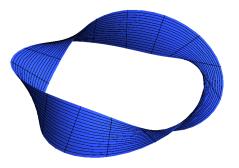
- fields are connected by gauge transformations
- geometric twists are possible



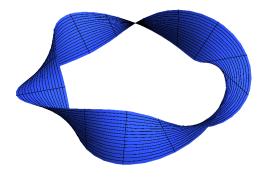
- fields are connected by gauge transformations
- geometric twists are possible



- fields are connected by gauge transformations
- geometric twists are possible



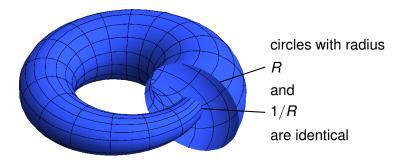
- fields are connected by gauge transformations
- geometric twists are possible



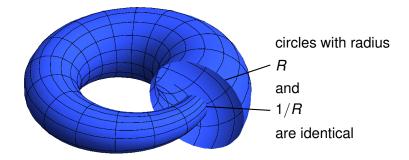
- fields are connected by gauge transformations
- geometric twists are possible

► closed strings also wind around the torus → T-duality

lacktriangleright closed strings also wind around the torus ightarrow T-duality

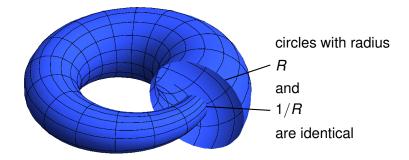


lacktriangleright closed strings also wind around the torus ightarrow T-duality



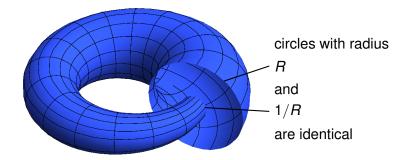
new interesting properties like non-commutativity

▶ closed strings also wind around the torus → T-duality



- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA

▶ closed strings also wind around the torus → T-duality



- new interesting properties like non-commutativity
- compactifications lead to gauged SUGRA
 - moduli stabilization
 - effective cosmological constant
 - spontaneous SUSY breaking

1. geometric string theory background with fluxes

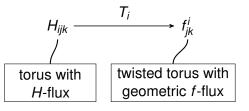
- 1. geometric string theory background with fluxes
- 2. T-Duality along different directions

- 1. geometric string theory background with fluxes
- 2. T-Duality along different directions
 - ▶ well-known example: fibered tours with H-flux

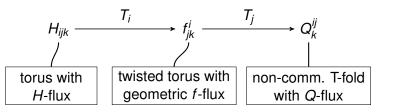
```
torus with

H-flux
```

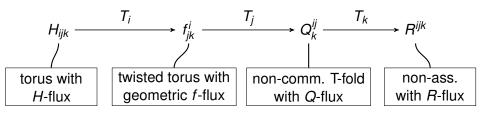
- 1. geometric string theory background with fluxes
- 2. T-Duality along different directions
 - ▶ well-known example: fibered tours with H-flux



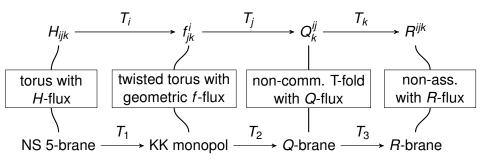
- 1. geometric string theory background with fluxes
- 2. T-Duality along different directions
 - well-known example: fibered tours with H-flux



- 1. geometric string theory background with fluxes
- 2. T-Duality along different directions
 - ▶ well-known example: fibered tours with H-flux

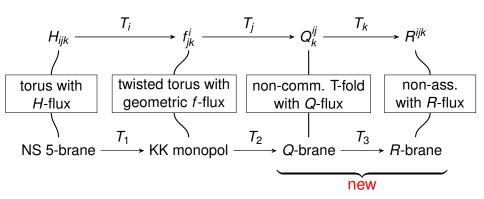


- 1. geometric string theory background with fluxes
- 2. T-Duality along different directions
- well-known example: fibered tours with H-flux



we looked at the sources of these fluxes

- 1. geometric string theory background with fluxes
- 2. T-Duality along different directions
- well-known example: fibered tours with H-flux

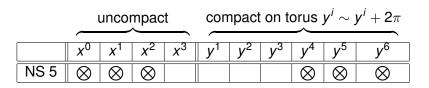


we looked at the sources of these fluxes

▶ brane charged under the Kalb-Ramond field B

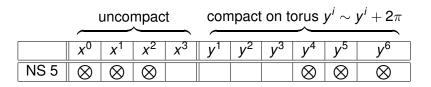
		unco	mpac	t	compact on torus $y^i \sim y^i + 2\pi$						
	x ⁰	<i>x</i> ¹	x ²	<i>x</i> ³	<i>y</i> ¹	y^2	<i>y</i> ³	y^4	y ⁵	y ⁶	
NS 5	\otimes	\otimes	\otimes					\otimes	\otimes	\otimes	

brane charged under the Kalb-Ramond field B



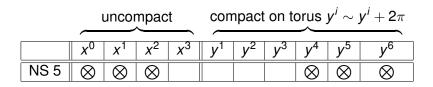
ightharpoonup 5 spatial directions along the brane \otimes

brane charged under the Kalb-Ramond field B



- ▶ 5 spatial directions along the brane ⊗
- domain wall in uncompactified space

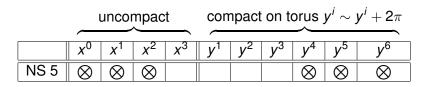
brane charged under the Kalb-Ramond field B



- ▶ 5 spatial directions along the brane ⊗
- domain wall in uncompactified space

$$ds^2_{NS5} = \sum_i (dx^i_\parallel)^2 + h(r) \sum_k (dx^k_\perp)^2 \qquad e^\phi = \sqrt{h(r)}$$
 $H_{mnp} = \epsilon_{mnpq} \partial_q h(r)$

brane charged under the Kalb-Ramond field B

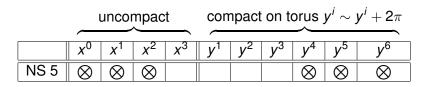


- ▶ 5 spatial directions along the brane ⊗
- domain wall in uncompactified space

$$ds^2_{NS5} = \sum_i (dx^i_\parallel)^2 + h(r) \sum_k (dx^k_\perp)^2 \qquad e^\phi = \sqrt{h(r)}$$
 $H_{mnp} = \epsilon_{mnpq} \partial_q h(r)$

parameterized by harmonic function h

brane charged under the Kalb-Ramond field B



- ▶ 5 spatial directions along the brane ⊗
- domain wall in uncompactified space

$$egin{align} ds^2_{NS5} &= \sum_i (dx^i_\parallel)^2 + h(r) \sum_k (dx^k_\perp)^2 \qquad e^\phi &= \sqrt{h(r)} \ H_{mnp} &= \epsilon_{mnpq} \partial_q h(r) \ \end{array}$$

- parameterized by harmonic function h
- solution of NS effective action

▶ T-Duality along y^1 (isometry) with Buscher rules

(Buscher, 1987)

X ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	y	<i>y</i> ²	<i>y</i> ³	y^4	<i>y</i> ⁵	<i>y</i> ⁶
\otimes	\otimes	\otimes					\otimes	\otimes	\otimes

► T-Duality along y¹ (isometry) with Buscher rules

(Buscher, 1987)

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	У	<i>y</i> ²	<i>y</i> ³	y^4	у ⁵	<i>y</i> ⁶
KK	\otimes	\otimes	\otimes		•			\otimes	\otimes	\otimes

(Buscher, 1987)

► T-Duality along y¹ (isometry) with Buscher rules

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	У	y ²	<i>y</i> ³	<i>y</i> ⁴	<i>y</i> ⁵	<i>y</i> ⁶
KK	\otimes	\otimes	\otimes		•			\otimes	\otimes	\otimes

$$ds_{KKint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{1}{h(r)} \left(dy + \sum_{i=2,3} A_{i} dy^{i} \right)^{2} + h(r) \sum_{i=2,3} (dy^{i})^{2}$$

(Buscher, 1987)

► T-Duality along y¹ (isometry) with Buscher rules

$$ds_{KKint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{1}{h(r)} \left(dy + \sum_{i=2,3} A_{i} dy^{i} \right)^{2} + h(r) \sum_{i=2,3} (dy^{i})^{2}$$

vanishing B-field and dilaton

► T-Duality along y¹ (isometry) with Buscher rules

(Buscher, 1987)

	x ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	У	<i>y</i> ²	<i>y</i> ³	y^4	<i>y</i> ⁵	<i>y</i> ⁶
KK	\otimes	\otimes	\otimes		•			\otimes	\otimes	\otimes

$$ds_{KKint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{1}{h(r)} \left(dy + \sum_{i=2,3} A_{i} dy^{i} \right)^{2} + h(r) \sum_{i=2,3} (dy^{i})^{2}$$

- vanishing B-field and dilaton
- geometric background

► T-Duality along y¹ (isometry) with Buscher rules

$$ds_{KKint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{1}{h(r)} \left(dy + \sum_{i=2,3} A_{i} dy^{i} \right)^{2} + h(r) \sum_{i=2,3} (dy^{i})^{2}$$

- vanishing B-field and dilaton
- geometric background
- A₂ and A₃ components of one-form gauge field

(Buscher, 1987)

► T-Duality along y¹ (isometry) with Buscher rules

$$ds_{KKint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{1}{h(r)} \left(dy + \sum_{i=2,3} A_{i} dy^{i} \right)^{2} + h(r) \sum_{i=2,3} (dy^{i})^{2}$$

- vanishing B-field and dilaton
- geometric background
- A₂ and A₃ components of one-form gauge field
- ▶ we choose gauge A₃ = 0

▶ T-Duality along y^1 (isometry) with Buscher rules

$$ds_{KKint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{1}{h(r)} \left(dy + \sum_{i=2,3} A_{i} dy^{i} \right)^{2} + h(r) \sum_{i=2,3} (dy^{i})^{2}$$

- vanishing B-field and dilaton
- geometric background
- A₂ and A₃ components of one-form gauge field
- we choose gauge $A_3 = 0$
- remaining component A₂ (= B_{y¹,y²} of NS 5-brane) is connected with h

$$\partial_{y^3} A_2 = \partial_{x^3} h$$

► T-Duality along y^1 and y^2 (isometries)

$ x^0$	x ¹	x^2	<i>x</i> ³	y	<i>y'</i>	<i>y</i> ³	y^4	<i>y</i> ⁵	<i>y</i> ⁶
\otimes	\otimes	\otimes					\otimes	\otimes	\otimes

► T-Duality along y^1 and y^2 (isometries)

x ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	у	<i>y'</i>	<i>y</i> ³	y^4	y ⁵	<i>y</i> ⁶
\otimes	\otimes	\otimes		•	•		\otimes	\otimes	\otimes

T-Duality along y¹ and y² (isometries)

$$ds_{Qint}^2 = \sum_{i=4,5,6} (dy^i)^2 + \frac{h(r)}{h(r)^2 + A_2^2} (dy^2 + dy'^2) + h(r)(dy^3)^2$$

$$e^{\phi} = \sqrt{\frac{h(r)}{h(r)^2 + A_2^2}} \qquad \qquad B_{y,y'} = -\frac{A_2}{h(r)^2 + A_2^2}$$

► T-Duality along y¹ and y² (isometries)

$$ds_{Qint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{h(r)}{h(r)^{2} + A_{2}^{2}} (dy^{2} + dy'^{2}) + h(r)(dy^{3})^{2}$$

$$e^{\phi} = \sqrt{\frac{h(r)}{h(r)^2 + A_2^2}}$$
 $B_{y,y'} = -\frac{A_2}{h(r)^2 + A_2^2}$

non-geometric background:

$$A_2(x^3, y^3) \neq A_2(x^3, y^3 + 2\pi)$$

► T-Duality along y¹ and y² (isometries)

$$ds_{Qint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{h(r)}{h(r)^{2} + \frac{A_{2}^{2}}{A_{2}^{2}}} (dy^{2} + dy'^{2}) + h(r)(dy^{3})^{2}$$

$$e^{\phi} = \sqrt{\frac{h(r)}{h(r)^{2} + A_{2}^{2}}} \qquad B_{y,y'} = -\frac{A_{2}}{h(r)^{2} + A_{2}^{2}}$$

already considered by

(E.Lozano-Tellechea, T. Ortin, 2001) (J. de Boer, M. Sigemori, 2010)

non-geometric background:

$$A_2(x^3,y^3) \neq A_2(x^3,y^3+2\pi)$$

solution of the NS effective action

► T-Duality along y¹ and y² (isometries)

$$ds_{Qint}^{2} = \sum_{i=4,5,6} (dy^{i})^{2} + \frac{h(r)}{h(r)^{2} + \frac{A_{2}^{2}}{A_{2}^{2}}} (dy^{2} + dy'^{2}) + h(r)(dy^{3})^{2}$$

$$e^{\phi} = \sqrt{\frac{h(r)}{h(r)^{2} + A_{2}^{2}}} \qquad B_{y,y'} = -\frac{A_{2}}{h(r)^{2} + A_{2}^{2}}$$

already considered by

(E.Lozano-Tellechea, T. Ortin, 2001) (J. de Boer, M. Sigemori, 2010)

non-geometric background:

$$A_2(x^3, y^3) \neq A_2(x^3, y^3 + 2\pi)$$

- solution of the NS effective action
- for $h(r) = Qx^3$ we get T-fold with Q flux

Q-brane

T-Duality along y¹ and y² (isometries)

$$ds^2_{Qint} = \sum_{i=4,5,6} (dy^i)^2 + \frac{h(r)}{h(r)^2 + \frac{A_2^2}{A_2^2}} (dy^2 + dy'^2) + h(r)(dy^3)^2$$
 $e^{\phi} = \sqrt{\frac{h(r)}{h(r)^2 + A_2^2}} \qquad B_{y,y'} = -\frac{A_2}{h(r)^2 + A_2^2}$

already considered by

(E.Lozano-Tellechea, T. Ortin, 2001) (J. de Boer, M. Sigemori, 2010)

non-geometric background:

$$A_2(x^3, y^3) \neq A_2(x^3, y^3 + 2\pi)$$

- solution of the NS effective action
- for $h(r) = Qx^3$ we get T-fold with Q flux

▶ fields are **not** globally well defined

- ▶ fields are **not** globally well defined
- ? how to evaluate integrals for compactification

- ▶ fields are **not** globally well defined
- ? how to evaluate integrals for compactification
- ! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong, 2012)

$$(\tilde{G}^{-1}+\beta)^{-1}\equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B$$

- ▶ fields are **not** globally well defined
- ? how to evaluate integrals for compactification
- ! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong, 2012)

$$(\tilde{G}^{-1} + \beta)^{-1} \equiv \tilde{\mathcal{E}}^{-1} = \mathcal{E} = G + B$$

$$\begin{split} d\tilde{s}_{Q\text{int}}^2 &= \frac{1}{h(r)} \bigg(dy^2 + dy'^2 \bigg) + h(r) (dy^3)^2 + \sum_{i=4,5,6} (dy^i)^2 \\ e^{\tilde{\phi}} &= \frac{1}{\sqrt{h(r)}} \qquad \beta^{y,y'} = -A_2(y^3) \quad \text{and} \quad Q_3^{y,y'} = \partial_{y^3} \beta^{y,y'} = -\partial_{x^3} h \end{split}$$

- ▶ fields are **not** globally well defined
- ? how to evaluate integrals for compactification
- ! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong, 2012)

$$(\tilde{G}^{-1}+\beta)^{-1}\equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B$$

$$\begin{split} d\tilde{s}_{Q\text{int}}^2 &= \frac{1}{h(r)} \bigg(dy^2 + dy'^2 \bigg) + h(r) (dy^3)^2 + \sum_{i=4,5,6} (dy^i)^2 \\ e^{\tilde{\phi}} &= \frac{1}{\sqrt{h(r)}} \qquad \beta^{y,y'} = -A_2(y^3) \quad \text{and} \quad Q_3^{y,y'} = \partial_{y^3} \beta^{y,y'} = -\partial_{x^3} h \end{split}$$

globally well defined

- ▶ fields are **not** globally well defined
- ? how to evaluate integrals for compactification
- ! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong, 2012)

$$(\tilde{G}^{-1}+\beta)^{-1}\equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B$$

$$\begin{split} d\tilde{s}_{Q\text{int}}^2 &= \frac{1}{h(r)} \bigg(dy^2 + dy'^2 \bigg) + h(r) (dy^3)^2 + \sum_{i=4,5,6} (dy^i)^2 \\ e^{\tilde{\phi}} &= \frac{1}{\sqrt{h(r)}} \qquad \beta^{y,y'} = -A_2(y^3) \quad \text{and} \quad Q_3^{y,y'} = \partial_{y^3} \beta^{y,y'} = -\partial_{x^3} h \end{split}$$

- globally well defined
- solution of the refined NS action

$$ilde{S} = \int \mathrm{d}^{10} x \, \sqrt{| ilde{G}|} e^{-2 ilde{\phi}} \left(ilde{\mathcal{R}} + 4(\partial ilde{\phi})^2 - rac{1}{4} Q^2
ight)$$

- ▶ fields are **not** globally well defined
- ? how to evaluate integrals for compactification
- ! field redefinition (D. Andriod, O. Hohm, M. Larfors, D. Lüst, P. Patalong, 2012)

$$(\tilde{G}^{-1}+eta)^{-1}\equiv \tilde{\mathcal{E}}^{-1}=\mathcal{E}=G+B$$

$$d\tilde{s}_{\mathrm{Qint}}^2 = \frac{1}{h(r)} \left(dy^2 + dy'^2 \right) + h(r)(dy^3)^2 + \sum_{i=4,5,6} (dy^i)^2$$
 $e^{\tilde{\phi}} = \frac{1}{\sqrt{h(r)}} \qquad \beta^{y,y'} = -A_2(y^3) \quad \text{and} \quad Q_3^{y,y'} = \partial_{y^3} \beta^{y,y'} = -\partial_{x^3} h$

- globally well defined
- solution of the refined NS action

$$ilde{S} = \int \mathrm{d}^{10} x \, \sqrt{| ilde{G}|} e^{-2 ilde{\phi}} \left(ilde{\mathcal{R}} + 4(\partial ilde{\phi})^2 - rac{1}{4} Q^2
ight)$$

simplifies calculations considerably

backgrounds must be solutions of the NS action

▶ backgrounds must be solutions of the NS action ✓

- ▶ backgrounds must be solutions of the NS action
- preserve maximal SUSY in non-compact dimensions

- lacktriangle backgrounds must be solutions of the NS action $oldsymbol{\sqrt{}}$
- preserve maximal SUSY in non-compact dimensions
 - 1. metric of background must have the form:

$$ds^2 = e^{2A(y)} \frac{ds_4^2}{ds_4^2} + \frac{g_{ij}dy^idy^j}{e^{2A(y)}}$$
 internal manifold \mathcal{M}_6

- lacktriangle backgrounds must be solutions of the NS action $oldsymbol{\sqrt{}}$
- preserve maximal SUSY in non-compact dimensions
 - 1. metric of background must have the form:

$$ds^2 = e^{2A(y)} ds_4^2 + g_{ij} dy^i dy^j$$
 AdS $_4$ internal manifold \mathcal{M}_6

2. SU(3) (IIA) or SU(2) (IIB) group structure on \mathcal{M}_6

- backgrounds must be solutions of the NS action \checkmark
- preserve maximal SUSY in non-compact dimensions
 - 1. metric of background must have the form:

$$ds^2 = e^{2A(y)} ds_4^2 + g_{ij} dy^i dy^j$$
 AdS $_4$ internal manifold \mathcal{M}_6

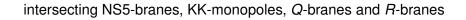
2. SU(3) (IIA) or SU(2) (IIB) group structure on \mathcal{M}_6

intersecting NS5-branes, KK-monopoles, Q-branes and R-branes

- lacktriangle backgrounds must be solutions of the NS action lacktriangle
- preserve maximal SUSY in non-compact dimensions
 - 1. metric of background must have the form:

$$ds^2 = e^{2A(y)} \frac{ds_4^2}{ds_4^2} + \frac{g_{ij}dy^idy^j}{g_{ij}^2}$$
AdS₄ internal manifold \mathcal{M}_6

2. SU(3) (IIA) or SU(2) (IIB) group structure on \mathcal{M}_6 \checkmark



▶ intersecting branes via "harmonic superposition rules"

(A.A. Tseytlin, 1996)

► intersecting branes via "harmonic superposition rules" (A.A. Tseytlin, 1996)

complete background is 3xD4, 1xD8 and 4xNS5

(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

	x ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	y^1	y^2	<i>y</i> ³	y^4	y ⁵	<i>y</i> ⁶
NS5	\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
NS5′	\otimes	\otimes	\otimes		\otimes			\otimes		\otimes
NS5"	\otimes	\otimes	\otimes			\otimes		\otimes	\otimes	
NS5‴	\otimes	\otimes	\otimes			\otimes	\otimes			\otimes

- ► intersecting branes via "harmonic superposition rules" (A.A. Tseytlin, 1996)
- ► complete background is 3xD4, 1xD8 and 4xNS5

(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

	x ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	y^1	y^2	<i>y</i> ³	y^4	y ⁵	<i>y</i> ⁶
NS5	\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
NS5′	\otimes	\otimes	\otimes		\otimes			\otimes		\otimes
NS5"	\otimes	\otimes	\otimes			\otimes		\otimes	\otimes	
NS5‴	\otimes	\otimes	\otimes			\otimes	\otimes			\otimes

 $\left(\begin{array}{c} \mathsf{common}\; x_\perp \; \mathsf{of} \\ \mathsf{all}\; \mathsf{branes} \end{array}\right)$

- intersecting branes via "harmonic superposition rules"
 (A.A. Tseytlin, 1996)
- ▶ complete background is 3xD4, 1xD8 and 4xNS5

(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

	x ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	y^1	<i>y</i> ²	<i>y</i> ³	y^4	y ⁵	<i>y</i> ⁶
NS5	\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
NS5′	\otimes	\otimes	\otimes		\otimes			\otimes		\otimes
NS5"	\otimes	\otimes	\otimes			\otimes		\otimes	\otimes	
NS5‴	\otimes	\otimes	\otimes			\otimes	\otimes			\otimes

common x_{\perp} of

all branes $h(r) = Hx^3 \text{ according to "harmonic superposition rules"}$

 $H_{y^2,y^4,y^6} = H_{y^2,y^5,y^3} = H_{y^1,y^6,y^3} = H_{y^1,y^5,y^4} = H$

- intersecting branes via "harmonic superposition rules"
 (A.A. Tseytlin, 1996)
- ▶ complete background is 3xD4, 1xD8 and 4xNS5

(C. Kounnas, D. Lust, P.M. Petropoulos, D. Tsimpis, 2007)

	x ⁰	<i>x</i> ¹	<i>x</i> ²	X	3	<i>y</i> ¹	<i>y</i> ²	<i>y</i> ³	y^4	y ⁵	<i>y</i> ⁶
NS5	\otimes	\otimes	\otimes			\otimes		\otimes		\otimes	
NS5′	\otimes	\otimes	\otimes			\otimes			\otimes		\otimes
NS5"	\otimes	\otimes	\otimes				\otimes		\otimes	\otimes	
NS5‴	\otimes	\otimes	\otimes				\otimes	\otimes			\otimes
						_(mmo bran		of)

▶ $h(r) = Hx^3$ according to "harmonic superposition rules"

$$H_{V^2,V^4,V^6} = H_{V^2,V^5,V^3} = H_{V^1,V^6,V^3} = H_{V^1,V^5,V^4} = H$$

▶ in near horizon limit $x^3 \rightarrow 0$ we get $AdS_4 \times T^6$

► T-Duality along y^1 , y^2 , y^3 and y^4 (isometries)

<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	y^1	<i>y</i> ²	<i>y</i> ³	y^4	<i>y</i> ⁵	у ⁶
\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
\otimes	\otimes	\otimes		\otimes			\otimes		\otimes
\otimes	\otimes	\otimes			\otimes		\otimes	\otimes	
\otimes	\otimes	\otimes			\otimes	\otimes			\otimes

► T-Duality along y^1 , y^2 , y^3 and y^4 (isometries)

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>y</i> ¹	<i>y</i> ²	<i>y</i> ³	y^4	<i>y</i> ⁵	<i>y</i> ⁶
Q	\otimes	\otimes	\otimes		\otimes	•	\otimes	•	\otimes	
Q'	\otimes	\otimes	\otimes		\otimes	•	•	\otimes		\otimes
Q''	\otimes	\otimes	\otimes		•	\otimes	•	\otimes	\otimes	
$Q^{\prime\prime\prime}$	\otimes	\otimes	\otimes		•	\otimes	\otimes	•		\otimes

▶ T-Duality along y^1 , y^2 , y^3 and y^4 (isometries)

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>y</i> ¹	<i>y</i> ²	<i>y</i> ³	y^4	<i>y</i> ⁵	<i>y</i> ⁶
Q	\otimes	\otimes	\otimes		\otimes	•	\otimes	•	\otimes	
Q'	\otimes	\otimes	\otimes		\otimes	•	•	\otimes		\otimes
Q"	\otimes	\otimes	\otimes		•	\otimes	•	\otimes	\otimes	
<i>Q'''</i>	\otimes	\otimes	\otimes		•	\otimes	\otimes	•		\otimes

non-geometric configuration

▶ T-Duality along y^1 , y^2 , y^3 and y^4 (isometries)

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>y</i> ¹	<i>y</i> ²	<i>y</i> ³	<i>y</i> ⁴	<i>y</i> ⁵	<i>y</i> ⁶
Q	\otimes	\otimes	\otimes		\otimes	•	\otimes	•	\otimes	
Q'	\otimes	\otimes	\otimes		\otimes	•	•	\otimes		\otimes
Q"	\otimes	\otimes	\otimes		•	\otimes	•	\otimes	\otimes	
<i>Q'''</i>	\otimes	\otimes	\otimes		•	\otimes	\otimes	•		\otimes

- non-geometric configuration
- ► near horizon limit with $x = 1 + Q^2 \left((y^5)^2 + (y^6)^2 \right)$

$$ds_{4Qint} = \frac{1}{x} \sum_{i=1}^{4} (dy^{i})^{2} + \sum_{j=5,6} (dy^{j})^{2}$$
$$-B_{24} = B_{13} = \frac{Qy^{6}}{x} \qquad B_{14} = B_{23} = \frac{Qy^{5}}{x}$$

Field redefinition leads to

• \tilde{G} and β have the same form as g and B of 4 NS 5-branes

Field redefinition leads to

- \tilde{G} and β have the same form as g and B of 4 NS 5-branes
- globally well defined representation

Field redefinition leads to

- \tilde{G} and β have the same form as g and B of 4 NS 5-branes
- globally well defined representation
- ▶ in near horizon limit: flat torus with four Q-fluxes

$$Q_6^{24} = -Q_6^{13} = -Q_5^{14} = -Q_5^{23} = Q,$$

and IIA superpotential

$$W_Q = Q_6^{24} ST_1 T_2 + Q_5^{23} T_1 T_2 U_1 + Q_5^{14} T_1 T_2 U_2 + Q_6^{13} T_1 T_2 U_3$$

▶ T-Duality along y^1 and y^3

	x ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>y</i> ¹	<i>y</i> ²	<i>y</i> ³	<i>y</i> ⁴	<i>y</i> ⁵	<i>y</i> ⁶
NS 5	\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
KK'	\otimes	\otimes	\otimes		\otimes			\otimes		\otimes
Q''	\otimes	\otimes	\otimes			\otimes		\otimes	\otimes	
KK"	\otimes	\otimes	\otimes			\otimes	\otimes			\otimes

▶ T-Duality along y^1 and y^3

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>y</i> ¹	<i>y</i> ²	<i>y</i> ³	y^4	<i>y</i> ⁵	<i>y</i> ⁶
NS 5	\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
KK'	\otimes	\otimes	\otimes		\otimes		•	\otimes		\otimes
Q"	\otimes	\otimes	\otimes		•	\otimes	•	\otimes	\otimes	
KK"	\otimes	\otimes	\otimes		•	\otimes	\otimes			\otimes

non-geometric background

▶ T-Duality along y^1 and y^3

	x ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>y</i> ¹	<i>y</i> ²	<i>y</i> ³	y^4	у ⁵	<i>y</i> ⁶
NS 5	\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
KK'	\otimes	\otimes	\otimes		\otimes		•	\otimes		\otimes
Q"	\otimes	\otimes	\otimes		•	\otimes	•	\otimes	\otimes	
KK'''	\otimes	\otimes	\otimes		•	\otimes	\otimes			\otimes

- non-geometric background
- ▶ BUT: field redefinition

$$(\tilde{G}^{-1} + \beta)^{-1} = G + B$$

does not give globally well defined $\tilde{\mathbf{G}}$ and β

▶ T-Duality along y^1 and y^3

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>y</i> ¹	<i>y</i> ²	<i>y</i> ³	<i>y</i> ⁴	<i>y</i> ⁵	<i>y</i> ⁶
NS 5	\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
KK'	\otimes	\otimes	\otimes		\otimes		•	\otimes		\otimes
Q''	\otimes	\otimes	\otimes		•	\otimes	•	\otimes	\otimes	
KK'''	\otimes	\otimes	\otimes		•	\otimes	\otimes			\otimes

- non-geometric background
- BUT: field redefinition

$$(\tilde{G}^{-1} + \beta)^{-1} = G + B$$

does not give globally well defined $\tilde{\mathbf{G}}$ and β

We need a more general field redefinition with the corresponding fluxes and superpotentials!

Q- and R-branes are sources of non-geometric fluxes

- Q- and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes

- Q- and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes
- construction of various IIA and IIB background with non-geometric fluxes by intersecting branes

- Q- and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes
- construction of various IIA and IIB background with non-geometric fluxes by intersecting branes
- their superpotential can be used to stabilize moduli in 4D

- Q- and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes
- construction of various IIA and IIB background with non-geometric fluxes by intersecting branes
- their superpotential can be used to stabilize moduli in 4D
- indication for new kind of field redefinition

- Q- and R-branes are sources of non-geometric fluxes
- field redefinition is a powerful tool to handle these branes
- construction of various IIA and IIB background with non-geometric fluxes by intersecting branes
- their superpotential can be used to stabilize moduli in 4D
- indication for new kind of field redefinition

When you are curious about *Q*- and *R*-branes, you can have a look at arXiv:1303.1413 (F. Haßler, D. Lüst, 2013)