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Hyperconifold Singularities

• The conifold, C, is the simplest singularity of a Calabi–Yau threefold:

C = { y1y2 − y3y4 = 0 | (y1, y2, y3, y4) ∈ C4 }

• We can take quotients C/G, G a finite group of symmetries of C.

• When only ~0 is fixed, we get new isolated singularities – hyperconifolds.

• Interesting features:

— Hyperconifolds occur naturally in compact CY3’s.

— Can be either deformed or resolved −→ hyperconifold transitions

— Mirror to ordinary conifolds
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Multiply-Connected Calabi-Yau Threefolds

• CY3’s X with π1(X) 6= 1 are of particular interest:

— Wilson line gauge symmetry breaking in heterotic models

— Most manifolds with small Hodge numbers are in this class

— One of two independent torsion subgroups of CY3 (co)homology

• Typically, X = X̃/G, where

— X̃ is a complete intersection in a toric variety T , π1(X̃) = 1

— G acts on T ; generic invariant X̃ misses the fixed points

• X̃ can often be deformed to intersect a unique G-fixed point

⇒ G-hyperconifold singularity on X.

Note: Focus only on cyclic groups Zn.
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Example

Consider X̃ ∼=
P2

P2

[
3

3

]
. Let {Yi} and {Zm} be coordinates on the two P2.

Define a Z3 action:

Yi → ζiYi , Zm → ζmZm ζ = e2πi/3

Let X̃ be defined by an invariant polynomial. Then:

• X̃ is generically smooth.

• X̃ avoids the fixed points, so X = X̃/Z3 is smooth.

• π1(X) ∼= Z3
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Example (Continued)

• Local coordinates: y1 = Y1/Y0, y2 = Y2/Y0, z1 = Z1/Z0, z2 = Z2/Z0

(y1, y2, z1, z2)→ (ζy1, ζ
2y2, ζz1, ζ

2z2)

• Expand invariant polynomial:

p = α0 + α1y1y2 + α2y1z2 + α3y2z1 + α4z1z2 + . . .

• The origin is the unique Z3-fixed point in this patch, p(~0) = α0.

• With α0 = 0, we get a conifold singularity at ~0.

X = X̃/Z3 develops a Z3-hyperconifold singularity.
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Resolution

Obvious question: can we resolve the singularity?

Toric geometry makes the analysis easy:

Conifold Z3-hyperconifold Resolution

This is manifestly crepant; one can check that it is projective.

Z3-hyperconifold transition X2,29 → X̂4,28

The exceptional set is simply-connected ⇒ π1(X̂) ∼= 1
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Classification

Context:

• Complete intersection CY3 X̃ in a toric variety

• Zn acts linearly on homogeneous coordinates of ambient space

• Invariant X̃ is smooth and misses fixed points; X = X̃/Zn is smooth

Near a fixed point, choose coordinates on which Zn acts diagonally.

Conjecture: Locally, the system can be reduced to a single invariant

polynomial p on a 4D slice, with non-degenerate quadratic piece.

The coordinates (y1, y2, y3, y4) must each transform with a primitive nth

root of unity, and therefore pair up to make invariants

p = α+ y1y4 − y2y3 + . . .
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Classification — Toric Diagrams

α→ 0 ⇒ p = y1y4 − y2y3 + . . .

The covering space thus develops a conifold singularity.

Toric coordinates

Let (t1, t2, t3) parametrise the torus
(
C∗
)3

. Embedding:

y1 =
t1
t3
, y2 = t2 , y3 =

t1
t2
, y4 = t3

Work out the fan; a single cone generated by vertices

(1, 0, 0) , (1, 1, 0) , (1, 0, 1) , (1, 1, 1)

Toric diagram:
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Classification — Toric Diagrams

p = y1y4 − y2y3 + . . .

WLOG, assume (y1, y2, y3, y4)→ (ζy1, ζ
ky2, ζ

−ky3, ζ
−1y4) , ζ := e2πi/n,

k relatively prime to n.1 These actions are all subgroups of the torus:

t1 → t1 , t2 → e2πik/nt2 , t3 → e−2πi/nt3

The quotient corresponds to refining the lattice; choosing a basis for the

new lattice, the cone now has vertices at

(1, 0, 0) , (1, 1, 0) , (1, k, n) , (1, k + 1, n)

(n, k)-hyperconifold: Cn,k

1k ∼ ±k±1 by y2 ↔ y3, (y1, y4)↔ (y2, y3)
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Toric Diagrams — Examples

C2,1 C3,1 C5,1 C5,2

(Note: These all look nicer in coordinates where the diagram is ‘nearly square’.)
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Mirror Symmetry

Given a toric Calabi–Yau, its mirror is given by (Gross, math/0012002) :

{F (u, v, y, z) := uv − f(y, z) = 0 | (u, v) ∈ C2 , (y, z) ∈
(
C∗
)2} ,

where f is a Laurent polynomial, with Newton polygon the toric diagram.

Claim: The mirror of any Zn-hyperconifold has n nodes (conifolds).

Proof: Recalling the vertices, the mirror of Cn,k is given by

0 = F = uv − (1 + y + ykzn + yk+1zn) = uv − (1 + y)(1 + ykzn)

Singularities occur when

F = dF = 0 ⇐⇒ u = v = 0 , y = −1 , zn = (−1)k+1 ,

hence there are n singular points. Easy to check Hessian is non-zero.
�
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Mirror Symmetry

Counter-example(s) to näıve expectation that conifold
mirror←→ conifold.

• Compact X with Zn-hyperconifold
mirror←→ compact Y with n nodes

• Deformation of one is mirror to resolution of the other.

• Explicitly checked for some examples in (RD, 1102.1428)
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Topology

The conifold C is a cone over S3×S2. Evslin & Kuperstein (hep-th/0702041)

give parametrisation:

W :=

(
y1 y2

y2 y4

)
, C : detW = 0

Base S3×S2 is |y1|2 + |y2|2 + |y3|2 + |y4|2 = Tr(W †W ) = 1. Write

W = Xvv† ,

where

X ∈ SU(2) , v ∈ P1 (||v|| = 1; phase irrelevant) .
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Topology

Base S3×S2 is Tr(W †W ) = 1. Write

W = Xvv† , X ∈ SU(2) , v ∈ C2, ||v|| = 1 .

Action for Cn,k is

(y1, y2, y3, y4)→ (ζy1, ζ
ky2, ζ

−ky3, ζ
−1y4) , ζ = e2πi/n

which is realised by

X →

(
ζ 0

0 ζ−k

)
X

(
1 0

0 ζk−1

)
, v →

(
1 0

0 ζ1−k

)
v .

Vanishing 3-cycle is S3/Zn; check that this action gives lens space L(n, k).

(Lens spaces: k rel prime to n, and k ∼ ±k±1)
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Resolutions

X0 has a hyperconifold singularity; is there a smooth Calabi-Yau X̂ → X0?

• Blowing up the Z2-hyperconifold resolves it:

Blow−up−→

• Actually, blow-up commutes with quotient:

— Bl~0(C) ∼= OP1×P1(−1,−1) ;
OP1×P1 (−1,−1)

Z2

∼= OP1×P1(−2,−2)

• Similarly, blowing up any Z2m-hyperconifold gives an orbifold CY.

• These all have CY resolutions.
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Example

Resolving C6,1:

Blow−up−→ −→
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Example

Resolving C8,3:

Blow−up−→ −→
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Resolving ‘Odd’ Hyperconifolds

What about Z2m+1-hyperconifolds? Need a more general approach.

Assume:

• X0 has a single Zn-hyperconifold singularity at a point p.

• Cl(X0) has a basis of divisors which do not intersect p.

• π : X̂ → X0 is some (analytic) resolution map, with exceptional set E.

Let ω0 be a Kähler form on X0. Then π∗ω0 integrates to zero on all

sub-varieties of E. So if we can find a ‘local Kähler form’ ωL, built out of

divisors contained in E, π∗ω0 + εωL will be a Kähler form for small ε > 0.

So a Kähler resolution depends on the existence of a ‘local Kähler form’.
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Example: Resolving C3,1

Two resolutions of C3,1; let t1D1 + t2D2 be putative local Kähler class

Case 1:

D1 · C1 = −3 , D2 · C1 = 0

D1 · C2 = 0 , D2 · C2 = −3

D1 · C3 = D2 · C3 = 1

t1 < 0

t2 < 0

t1 > 0 , t2 > 0

Case 2:

D1 · C1 = −2 , D2 · C1 = 1

D1 · C2 = 1 , D2 · C2 = −2

D1 · C3 = D2 · C3 = −1

−2t1 + t2 > 0

t1 − 2t2 > 0

−t1 − t2 > 0

So case 2 gives a Kähler resolution (e.g. t1 = t2 < 0); case 1 does not.
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Hodge Numbers

Resolving a Zn-hyperconifold introduces n− 1 new divisors

⇒ δh1,1 = n− 1

Asking that the CY hits a fixed point is one complex structure condition2

⇒ δh2,1 = −1

These imply δχ = 2n, which agrees with the toric calculation.

Zn-hyperconifold transition: δ(h1,1, h2,1) = (n− 1,−1)

It is easy to calculate new intersection numbers from the toric diagrams.

2Not clear that this is always true, but true in examples.
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Fundamental Group

Let X = X̃/Zn, and consider a Zn-hyperconifold transition:

X
def.
! X0

res.← X̂

Topologically, this is a surgery:

• π1(X) ∼= Zn

• Delete a lens space L(n, k); π1(L(n, k)) ∼= Zn

• Replace L(n, k) with a simply-connected space

• =⇒ π1(X̂) ∼= 1

Formally, this is a simple application of van Kampen’s theorem.
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Fundamental Group

More generally, suppose X = X̃/G for some group G.

• Zn ∼= H ≤ G develops a fixed point → |G|
|H| fixed points by symmetry

• X develops a single Zn-hyperconifold singularity

• Resolution X̂, π1(X̂) ∼= G/HG, where HG is normal closure of H in G
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Constructing New Calabi–Yau Threefolds

• Hundreds of known spaces with π1 6= 1

• Most admit multiple hyperconifold transitions, e.g. (RD, 1102.1428)

P2

P2

[
3

3

]
/Z3×Z3

∼= X2,11 Z3 X4,10 Z3 X6,9 Z3 X8,8

The last three spaces have π1
∼= Z3; X4,10 and X8,8 were unknown.

• Previously unknown fundamental groups:

— (Braun, 1003.3235) : S3 does not act freely on any known CY3. . .

— . . . but Dic3 ∼= Z3 o Z4 does: X1,4 = X̃/Dic3.

— Dic3 has Z2 as a normal subgroup; Dic3/Z2
∼= S3

— X1,4 Z2 X2,3, with π1(X2,3) ∼= S3 (RD, 1103.3156)

• Simple way to get ‘local cycles’ (for swiss cheese models, etc.)
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Connectivity of Moduli Spaces

• There is speculation that all CY3’s are connected by transitions.

• Conifold transitions do not change π1 (nor do flops).

• Perhaps all connected by conifold + hyperconifold (+ flop) transitions?
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A Reminder: Conifold Transitions

Type IIB on a CY3 (Strominger, hep-th/9504090;

Greene, Morrison, Strominger, hep-th/9504145) :

• Vanishing S3 ⇒ massless 4D hypermultiplet from wrapped D3-branes.

• Charged under U(1) associated to dual cycle; D-term prevents a VEV

• Multiple cycles in same homology class ⇒ D-flat directions

• Matches mathematical criterion for CY resolution of nodal variety

• Higgs branch VEV(s) are the new Kähler parameters

Rhys Davies Hyperconifolds 30/34



Hyperconifold transitions

X = X̃/Zn

• X moduli are a subspace of X̃ moduli

• Zn-hyperconifold on X ↔ single conifold on X̃

• Upstairs, D-term, one hypermultiplet ⇒ no resolution

• Downstairs:

• D3-worldvolume is L(n, k) ⇒ Wilson lines ⇒ n ground states

• So theory on X has n massless hypermultiplets.3

• Same D-term ⇒ n− 1 Higgs branch hypermultiplets ↔ new

Kähler parameters

Again, there is a nice match between mathematics and physics.

3Quotienting renormalises the charge by 1/
√
n, so one-loop corrections are the

same downstairs as upstairs.
Rhys Davies Hyperconifolds 31/34



Outline

Introduction/Overview

Toric Geometry and Mirror Symmetry

Topology and resolutions

Applications

Hyperconifold Transitions in String Theory

Summary

Rhys Davies Hyperconifolds 32/34



Summary

Zn-Hyperconifold Singularities

• Isolated singularities; cyclic quotients of the conifold C

• One-to-one correspondence with vanishing lens spaces L(n, k)

• Arise naturally in compact Calabi–Yau threefolds, when a free group

action develops a fixed point

• Can always be resolved, unlike conifold singularities
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Summary

Zn-Hyperconifold Transitions

• Potential to yield hundreds of new Calabi–Yau threefolds.

• Are mirror to familiar conifold transitions

• Have a nice Type IIB description similar to conifold transitions
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