Hyperconifold singularities and transitions

Rhys Davies

Mathematical Institute, University of Oxford

Network meeting, Ludwig-Maximilians-University Munich,

 $22^{\rm nd}$ March 2013

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 …のへで

Based on (arXiv: 0911.0708, 1102.1428) plus work in progress

Outline

Introduction/Overview

Toric Geometry and Mirror Symmetry

Topology and resolutions

Applications

Hyperconifold Transitions in String Theory

Summary

Hyperconifold Singularities

• The conifold, C, is the simplest singularity of a Calabi–Yau threefold:

$$\mathcal{C} = \{ y_1 y_2 - y_3 y_4 = 0 \mid (y_1, y_2, y_3, y_4) \in \mathbb{C}^4 \}$$

- We can take quotients \mathcal{C}/G , G a finite group of symmetries of \mathcal{C} .
- When only $\vec{0}$ is fixed, we get new *isolated* singularities hyperconifolds.
- Interesting features:
 - Hyperconifolds occur naturally in *compact* CY3's.
 - Can be either deformed or resolved \longrightarrow hyperconifold transitions
 - Mirror to ordinary conifolds

Multiply-Connected Calabi-Yau Threefolds

- CY3's X with $\pi_1(X) \neq 1$ are of particular interest:
 - Wilson line gauge symmetry breaking in heterotic models
 - Most manifolds with small Hodge numbers are in this class
 - One of two independent torsion subgroups of CY3 (co)homology
- Typically, $X = \tilde{X}/G$, where
 - \tilde{X} is a complete intersection in a toric variety T, $\pi_1(\tilde{X}) = 1$ - G acts on T; generic invariant \tilde{X} misses the fixed points
- \tilde{X} can often be deformed to intersect a unique G-fixed point \Rightarrow G-hyperconifold singularity on X.

Note: Focus only on cyclic groups \mathbb{Z}_n .

Example

Consider $\tilde{X} \cong \frac{\mathbb{P}^2}{\mathbb{P}^2} \begin{bmatrix} 3\\ 3 \end{bmatrix}$. Let $\{Y_i\}$ and $\{Z_m\}$ be coordinates on the two \mathbb{P}^2 . Define a \mathbb{Z}_3 action:

$$Y_i \to \zeta^i Y_i , \ Z_m \to \zeta^m Z_m \ \zeta = e^{2\pi i/3}$$

Let \tilde{X} be defined by an invariant polynomial. Then:

- \tilde{X} is generically smooth.
- \tilde{X} avoids the fixed points, so $X = \tilde{X}/\mathbb{Z}_3$ is smooth.

• $\pi_1(X) \cong \mathbb{Z}_3$

Example (Continued)

• Local coordinates: $y_1 = Y_1/Y_0, y_2 = Y_2/Y_0, z_1 = Z_1/Z_0, z_2 = Z_2/Z_0$

$$(y_1, y_2, z_1, z_2) \to (\zeta y_1, \zeta^2 y_2, \zeta z_1, \zeta^2 z_2)$$

• Expand invariant polynomial:

$$p = \alpha_0 + \alpha_1 y_1 y_2 + \alpha_2 y_1 z_2 + \alpha_3 y_2 z_1 + \alpha_4 z_1 z_2 + \dots$$

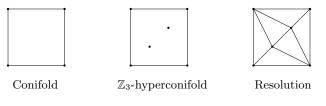
- The origin is the unique \mathbb{Z}_3 -fixed point in this patch, $p(\vec{0}) = \alpha_0$.
- With $\alpha_0 = 0$, we get a conifold singularity at $\vec{0}$.

 $X = \tilde{X}/\mathbb{Z}_3$ develops a \mathbb{Z}_3 -hyperconifold singularity.

Resolution

Obvious question: can we resolve the singularity?

Toric geometry makes the analysis easy:



This is manifestly crepant; one can check that it is projective.

 \mathbb{Z}_3 -hyperconifold transition $X^{2,29} \to \hat{X}^{4,28}$

The exceptional set is simply-connected $\Rightarrow \pi_1(\hat{X}) \cong 1$

	< □	▲御▶ ▲唐▶ ▲唐▶	≣
Rhys Davies	Hyperconifolds	7/34	

Outline

Introduction/Overview

Toric Geometry and Mirror Symmetry

Topology and resolutions

Applications

Hyperconifold Transitions in String Theory

Summary

Classification

Context:

- Complete intersection CY3 \tilde{X} in a toric variety
- \mathbb{Z}_n acts linearly on homogeneous coordinates of ambient space
- Invariant \tilde{X} is smooth and misses fixed points; $X = \tilde{X}/\mathbb{Z}_n$ is smooth

Near a fixed point, choose coordinates on which \mathbb{Z}_n acts diagonally.

Conjecture: Locally, the system can be reduced to a single invariant polynomial p on a 4D slice, with non-degenerate quadratic piece.

The coordinates (y_1, y_2, y_3, y_4) must each transform with a *primitive* n^{th} root of unity, and therefore pair up to make invariants

$$p = \alpha + y_1 y_4 - y_2 y_3 + \dots$$

Rhys Davies	Hyperconifolds	9/34	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シペペ

Classification — Toric Diagrams

$$\alpha \to 0 \Rightarrow p = y_1 y_4 - y_2 y_3 + \dots$$

The covering space thus develops a conifold singularity.

Toric coordinates

Let (t_1, t_2, t_3) parametrise the torus $(\mathbb{C}^*)^3$. Embedding:

$$y_1 = \frac{t_1}{t_3}$$
, $y_2 = t_2$, $y_3 = \frac{t_1}{t_2}$, $y_4 = t_3$

Work out the fan; a single cone generated by vertices

 $(1,0,0) \ , \ (1,1,0) \ , \ (1,0,1) \ , \ (1,1,1)$

Toric diagram:

Classification — Toric Diagrams

 $p = y_1 y_4 - y_2 y_3 + \dots$

WLOG, assume $(y_1, y_2, y_3, y_4) \rightarrow (\zeta y_1, \zeta^k y_2, \zeta^{-k} y_3, \zeta^{-1} y_4)$, $\zeta := e^{2\pi i/n}$, k relatively prime to n.¹ These actions are all subgroups of the torus:

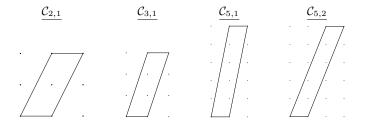
$$t_1 \to t_1 , t_2 \to e^{2\pi i k/n} t_2 , t_3 \to e^{-2\pi i/n} t_3$$

The quotient corresponds to refining the lattice; choosing a basis for the new lattice, the cone now has vertices at

(1,0,0), (1,1,0), (1,k,n), (1,k+1,n)

(n,k)-hyperconifold: $\mathcal{C}_{n,k}$

Toric Diagrams — Examples



(Note: These all look nicer in coordinates where the diagram is 'nearly square'.)

Mirror Symmetry

Given a toric Calabi–Yau, its mirror is given by (Gross, math/0012002) :

$$\{F(u, v, y, z) := uv - f(y, z) = 0 \mid (u, v) \in \mathbb{C}^2, \ (y, z) \in (\mathbb{C}^*)^2\},\$$

where f is a Laurent polynomial, with Newton polygon the toric diagram.

Claim: The mirror of any \mathbb{Z}_n -hyperconifold has n nodes (conifolds). Proof: Recalling the vertices, the mirror of $\mathcal{C}_{n,k}$ is given by

$$0 = F = uv - (1 + y + y^{k}z^{n} + y^{k+1}z^{n}) = uv - (1 + y)(1 + y^{k}z^{n})$$

Singularities occur when

$$F = dF = 0 \iff u = v = 0$$
, $y = -1$, $z^n = (-1)^{k+1}$,

hence there are n singular points. Easy to check Hessian is non-zero.

R

thys Davies	Hyperconifolds
-------------	----------------

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

13/34

Mirror Symmetry

 $\label{eq:counter-example} \mbox{Counter-example}(s) \mbox{ to naïve expectation that conifold} \stackrel{\rm mirror}{\longleftrightarrow} \mbox{conifold}.$

- Compact X with \mathbb{Z}_n -hyperconifold $\stackrel{\text{mirror}}{\longleftrightarrow}$ compact Y with n nodes
- Deformation of one is mirror to resolution of the other.
- Explicitly checked for some examples in (RD, 1102.1428)

Outline

Introduction/Overview

Toric Geometry and Mirror Symmetry

Topology and resolutions

Applications

Hyperconifold Transitions in String Theory

Summary

Rhys Davies Hyperconifolds 15/34

Topology

The conifold C is a cone over $S^3 \times S^2$. Evslin & Kuperstein (hep-th/0702041) give parametrisation:

$$W := \begin{pmatrix} y_1 & y_2 \\ y_2 & y_4 \end{pmatrix} , \quad \mathcal{C} : \det W = 0$$

Base $S^3 \times S^2$ is $|y_1|^2 + |y_2|^2 + |y_3|^2 + |y_4|^2 = \text{Tr}(W^{\dagger}W) = 1$. Write

$$W = Xvv^{\dagger}$$
,

where

$$X \in SU(2)$$
, $v \in \mathbb{P}^1$ ($||v|| = 1$; phase irrelevant).

Topology

Base $S^3 \times S^2$ is $\text{Tr}(W^{\dagger}W) = 1$. Write

$$W = Xvv^{\dagger}$$
, $X \in SU(2)$, $v \in \mathbb{C}^{2}, ||v|| = 1$.

Action for $\mathcal{C}_{n,k}$ is

$$(y_1, y_2, y_3, y_4) \to (\zeta y_1, \zeta^k y_2, \zeta^{-k} y_3, \zeta^{-1} y_4) , \ \zeta = e^{2\pi i/n}$$

which is realised by

$$X \to \begin{pmatrix} \zeta & 0 \\ 0 & \zeta^{-k} \end{pmatrix} X \begin{pmatrix} 1 & 0 \\ 0 & \zeta^{k-1} \end{pmatrix} , \quad v \to \begin{pmatrix} 1 & 0 \\ 0 & \zeta^{1-k} \end{pmatrix} v$$

Vanishing 3-cycle is S^3/\mathbb{Z}_n ; check that this action gives lens space L(n,k).

(Lens spaces: k rel prime to n, and $k \sim \pm k^{\pm 1}$)

Resolutions

 X_0 has a hyperconifold singularity; is there a smooth Calabi-Yau $\hat{X} \to X_0$?

• Blowing up the Z₂-hyperconifold resolves it:

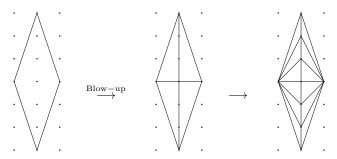
• Actually, blow-up commutes with quotient:

$$-\operatorname{Bl}_{\vec{0}}(\mathcal{C}) \cong \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-1,-1) \; ; \; \frac{\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-1,-1)}{\mathbb{Z}_{2}} \cong \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}(-2,-2)$$

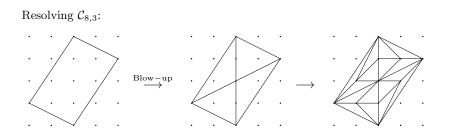
- Similarly, blowing up any \mathbb{Z}_{2m} -hyperconifold gives an orbifold CY.
- These all have CY resolutions.

Example

Resolving $C_{6,1}$:



Example



(日) (문) (문) (문) (문)

Resolving 'Odd' Hyperconifolds

What about \mathbb{Z}_{2m+1} -hyperconifolds? Need a more general approach. Assume:

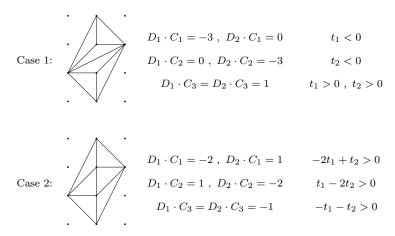
- X_0 has a single \mathbb{Z}_n -hyperconifold singularity at a point p.
- $Cl(X_0)$ has a basis of divisors which do not intersect p.
- $\pi: \hat{X} \to X_0$ is some (analytic) resolution map, with exceptional set E.

Let ω_0 be a Kähler form on X_0 . Then $\pi^*\omega_0$ integrates to zero on all sub-varieties of E. So if we can find a 'local Kähler form' ω_L , built out of divisors contained in E, $\pi^*\omega_0 + \epsilon\omega_L$ will be a Kähler form for small $\epsilon > 0$.

So a Kähler resolution depends on the existence of a 'local Kähler form'.

Example: Resolving $C_{3,1}$

Two resolutions of $C_{3,1}$; let $t_1D_1 + t_2D_2$ be putative local Kähler class



So case 2 gives a Kähler resolution (e.g. $t_1 = t_2 < 0$); case 1 does not.

Rhys Davies Hyperconifolds 22/34	Rhys Davies	Hyperconifolds	22/34	
----------------------------------	-------------	----------------	-------	--

Hodge Numbers

Resolving a \mathbb{Z}_n -hyperconifold introduces n-1 new divisors

$$\Rightarrow \delta h^{1,1} = n - 1$$

Asking that the CY hits a fixed point is one complex structure condition²

$$\Rightarrow \delta h^{2,1} = -1$$

These imply $\delta \chi = 2n$, which agrees with the toric calculation.

$$\mathbb{Z}_n$$
-hyperconifold transition: $\delta(h^{1,1}, h^{2,1}) = (n-1, -1)$

It is easy to calculate new intersection numbers from the toric diagrams.

²Not clear that this is always true, but true in examples. $\langle \overline{\partial} \rangle + \langle \overline{\partial} \rangle = \langle \overline{\partial} \rangle$ Rhys Davies Hyperconifolds 23/34

Fundamental Group

Let $X = \tilde{X}/\mathbb{Z}_n$, and consider a \mathbb{Z}_n -hyperconifold transition:

$$X \stackrel{\text{def.}}{\nleftrightarrow} X_0 \stackrel{\text{res.}}{\leftarrow} \hat{X}$$

Topologically, this is a surgery:

- $\pi_1(X) \cong \mathbb{Z}_n$
- Delete a lens space L(n,k); $\pi_1(L(n,k)) \cong \mathbb{Z}_n$
- Replace L(n, k) with a simply-connected space

•
$$\implies \pi_1(\hat{X}) \cong 1$$

Formally, this is a simple application of van Kampen's theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Fundamental Group

More generally, suppose $X = \tilde{X}/G$ for some group G.

- $\mathbb{Z}_n \cong H \leq G$ develops a fixed point $\rightarrow \frac{|G|}{|H|}$ fixed points by symmetry
- X develops a single \mathbb{Z}_n -hyperconifold singularity
- Resolution \hat{X} , $\pi_1(\hat{X}) \cong G/H^G$, where H^G is normal closure of H in G

Outline

Introduction/Overview

Toric Geometry and Mirror Symmetry

Topology and resolutions

Applications

Hyperconifold Transitions in String Theory

Summary

Constructing New Calabi–Yau Threefolds

- Hundreds of known spaces with $\pi_1 \neq 1$
- Most admit multiple hyperconifold transitions, e.g. (RD, 1102.1428)

$$\mathbb{P}^{2} \begin{bmatrix} 3 \\ 3 \end{bmatrix}_{\mathbb{Z}_{3} \times \mathbb{Z}_{3}} \cong X^{2,11} \stackrel{\mathbb{Z}_{3}}{\leadsto} X^{4,10} \stackrel{\mathbb{Z}_{3}}{\leadsto} X^{6,9} \stackrel{\mathbb{Z}_{3}}{\leadsto} X^{8,8}$$

The last three spaces have $\pi_1 \cong \mathbb{Z}_3$; $X^{4,10}$ and $X^{8,8}$ were unknown.

- Previously unknown fundamental groups:
 - (Braun, 1003.3235) : S_3 does not act freely on any known CY3...

— ... but
$$\operatorname{Dic}_3 \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_4$$
 does: $X^{1,4} = \tilde{X}/\operatorname{Dic}_3$.

— Dic₃ has \mathbb{Z}_2 as a normal subgroup; Dic₃/ $\mathbb{Z}_2 \cong S_3$

$$-X^{1,4} \stackrel{\mathbb{Z}_2}{\rightsquigarrow} X^{2,3}$$
, with $\pi_1(X^{2,3}) \cong S_3$ (RD, 1103.3156)

• Simple way to get 'local cycles' (for swiss cheese models, etc.)

Ruys Davies Ryperconnoids 27/34	Rhys Davies	Hyperconifolds	27/34	
---------------------------------	-------------	----------------	-------	--

Connectivity of Moduli Spaces

- There is speculation that all CY3's are connected by transitions.
- Conifold transitions do not change π_1 (nor do flops).
- Perhaps all connected by conifold + hyperconifold (+ flop) transitions?

Outline

Introduction/Overview

Toric Geometry and Mirror Symmetry

Topology and resolutions

Applications

Hyperconifold Transitions in String Theory

Summary

A Reminder: Conifold Transitions

Type IIB on a CY3 (Strominger, hep-th/9504090;

Greene, Morrison, Strominger, hep-th/9504145) :

- Vanishing $S^3 \Rightarrow$ massless 4D hypermultiplet from wrapped D3-branes.
- Charged under U(1) associated to dual cycle; *D*-term prevents a VEV
- Multiple cycles in same homology class \Rightarrow *D*-flat directions
- Matches mathematical criterion for CY resolution of nodal variety
- Higgs branch VEV(s) are the new Kähler parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Hyperconifold transitions

 $\underline{X} = \tilde{X} / \mathbb{Z}_n$

- X moduli are a subspace of \tilde{X} moduli
- \mathbb{Z}_n -hyperconifold on $X \leftrightarrow$ single conifold on \tilde{X}
- Upstairs, *D*-term, one hypermultiplet \Rightarrow no resolution
- Downstairs:
 - D3-worldvolume is $L(n,k) \Rightarrow$ Wilson lines $\Rightarrow n$ ground states
 - So theory on X has n massless hypermultiplets.³
 - Same D-term $\Rightarrow n-1$ Higgs branch hypermultiplets \leftrightarrow new Kähler parameters

Again, there is a nice match between mathematics and physics.

³Quotienting renormalises the charge by $1/\sqrt{n}$, so one-loop corrections are the same downstairs as upstairs.

Outline

Introduction/Overview

Toric Geometry and Mirror Symmetry

Topology and resolutions

Applications

Hyperconifold Transitions in String Theory

Summary

Summary

 \mathbb{Z}_n -Hyperconifold Singularities

- Isolated singularities; cyclic quotients of the conifold ${\mathcal C}$
- One-to-one correspondence with vanishing lens spaces L(n,k)
- Arise naturally in *compact* Calabi–Yau threefolds, when a free group action develops a fixed point
- Can always be resolved, unlike conifold singularities

Summary

\mathbb{Z}_n -Hyperconifold Transitions

- Potential to yield hundreds of new Calabi–Yau threefolds.
- Are mirror to familiar conifold transitions
- Have a nice Type IIB description similar to conifold transitions

▲□▶ ▲御▶ ▲国▶ ▲国▶ - 国 - の�?