$SU(5) \times U(1)$ F-Theory models from Toric Elliptic Fibrations

Volker Braun

Dublin Institute for Advanced Studies (DIAS) starting May 1: Oxford University

21. March 2013

2 Weierstrass Model

3 Gauge Group

Introduction

Definition (F-Theory)

Defines a (real) (12 - 2d)-dimensional effective field theory after compactification on elliptically fibered 2*d*-dimensional Calabi-Yau variety.

Gauge group, matter, and Yukawa couplings localized at different dimensions:

- dim_{\mathbb{C}} Y = 1: IIB in 10-d
- dim_{\mathbb{C}} *Y* = 2: Degenerate (Kodaira) fibers \Rightarrow Gauge group
- dim_{\mathbb{C}} *Y* = 3: Discriminant components intersect \Rightarrow Matter
- dim_{\mathbb{C}} *Y* = 4: Matter curves intersect \Rightarrow

Yukawa couplings, flux.

1 Introduction

2 Weierstrass Model

3 Gauge Group

4 Matter

5 Flatness

Elliptic Curves

First, look at dim Y = 1.

- Can write down CY 1-fold explicitly: $Y = \mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z})$
- But not in higher dimenison, better use embedding in 2-d ambient space
- For example, cubic hypersurface in \mathbb{P}^2
- Can always be written in Weierstrass form

$$y^2 = x^3 + ax + b$$

• Or, more generally, a (crepant resolution of a singular Fano) toric surface

16 Reflexive Polygons

Definition (Reflexive)

A lattice polytope ∇ is called reflexive if its dual Δ is also a lattice polytope.

Note: Larger $\nabla \Leftrightarrow$ smaller Δ .

The blue polygons:

- minimal with respect to removing a vertex (blow-down).
- dual is maximal with respect to inclusion.

Normal Form of a Cubic

Cubic surface:

$$\sum_{i,j,k}a_{ijk}u^iv^jw^k=0,\qquad [u:v:w]\in\mathbb{P}^2$$

The undergrad method:

- Find a flex
- Translate flex to [0:1:0]

• . . .

Picking a point (= zero-section) necessary, what if its not a flex?

Better solution:

Artin, Rodriguez-Villegas, Tate

- Switch to the Jacobian $\operatorname{Pic}^{0}(E)$
- Weierstrass parameters a, b = polynomial in a_{ijk} .

Volker Braun (DIAS)

Weierstrass Form

How to go from this:

$$P(u, v, w) = \sum_{i+j+k=3} a_{ijk} u^i v^j w^k = 0$$

to this: $y^2 = x^3 + fxz^4 + gz^6$ (the Weierstrass form)?

*SL*₃-rotation of [u : v : w] should not change f, g.

The Ternary Cubic

A cubic in three variables

$$P(u,v,w) = \sum_{i+j+k=3} a_{ijk} u^i v^j w^k = 0, \qquad [u:v:w] \in \mathbb{P}^2$$

has

- two invariants *S*, *T*, and
- four covariants P(u, v, w), H(u, v, w), $\Theta(u, v, w)$, and J(u, v, w)

satisfying the syzygy

$$J^{2} = 4\Theta^{3} + TP^{2}\Theta^{2} + \Theta(-4S^{3}P^{4} + 2STP^{3}H - 72S^{2}P^{2}H^{2} - 18TPH^{3} + 108SH^{4}) - 16S^{4}P^{5}H - 11S^{2}TP^{4}H^{2} - 4T^{2}P^{3}H^{3} + 54STP^{2}H^{4} - 432S^{2}PH^{5} - 27TH^{6}$$

Weierstrass Form From Invariants

For P = 0, the syzygy is

$$J^2 = 4\Theta^3 + 108\Theta SH^4 - 27TH^6$$

so up to some rescaling: y = J, $x = \Theta$, z = H, f = S, and g = T.

For example, the Fermat cubic $P = u^3 + v^3 + w^3$:

$$\omega : \mathbb{P}^2 \to \mathbb{P}^2[2,3,1], \begin{pmatrix} u \\ v \\ w \end{pmatrix} \mapsto \begin{pmatrix} -u^3 v^3 - u^3 w^3 - v^3 w^3 \\ \frac{1}{2}(u^6 v^3 - u^3 v^6 - u^6 w^3 + v^6 w^3 + u^3 w^6 - v^3 w^6) \\ uvw \end{pmatrix}$$

Introduction

2 Weierstrass Model

3 Gauge Group

4 Matter

5 Flatness

Degenerate Fibers

The Weierstrass for an elliptically fibered K3:

$$y^2 = x^3 + a(t)x + b(t)$$

where *t* is a coordinate on the base \mathbb{P}^1 .

- Discriminant is $\delta = 4a^3 + 27b^2 = 0$
- Non-Abelian gauge group G determined by degree of vanishing of (a, b, δ) at the discriminant. [Tate]
- Number of U(1)-factors = Mordell-Weil rank

$$\operatorname{rank} MW(Y) + \operatorname{rank}(G) = h^{11}(Y) - h^{11}(B) - 1$$

Gauge Group

Toric Fibrations

Toric fibration of toric varieties equivalent to fan morphism

Volker Braun (DIAS)

 $SU(5) \times U(1)$ in F-Theory

LMU München 12 / 33

Tops and Bottoms

- K3 as hypersurface in 3-d toric variety from 3-d reflexive polygon
- Fiber = kernel of fan morphism = preimage of origin
- Fiber is one of the 16 reflexive polygons

- Fiber cuts 3-d polytope in two halves (=*tops*)
- Non-fiber vertices and edges of top form extended Dynkin diagram of gauge group [Candelas]

A SU(5) Top

- d_0, \ldots, d_4 form SU(5) extended Dynkin diagram
- Correspond to irreducible toric surfaces in the fiber over torus fixed point
- Hypersurface cuts out *I*₅ Kodaira fiber

Volker Braun (DIAS)

 $SU(5) \times U(1)$ in F-Theory

Toric Sections

- Base of top = fiber polygon
- Base vertices whose two adjacent points are a lattice basis are toric sections
- Here: single toric section $f_0 = 0$

Trivial Top

• For each fiber polygon there is the trivial top with a single point at height 1.

- This means that the fiber over the torus fixed point in the base has only a single irreducible component.
- Cartesian products and bundles are all built with trivial tops.

Volker Braun (DIAS)

 $SU(5) \times U(1)$ in F-Theory

Introduction

2 Weierstrass Model

3 Gauge Group

5 Flatness

Matter Charges in $SU(5) \times U(1)$ Models

- Try to impose constraints on *SU*(5) GUT couplings by additional *U*(1)
- Open question: Which U(1) charges can the different SU(5)-reps acquire?
- Really question about elliptic CY 3-folds
- We constructed and analyzed a relatively complicated example

VB-Grimm-Keitel

The Toric Data for the Calabi-Yau Threefold X

Point $n_z \in \nabla \cap N$				Coordinate <i>z</i>	Divisor $V(z)$		
-1	-1	-1	-1	h_0	\hat{H}_0		
0	0	0	1	h_1	\hat{H}_1		
-2	-1	1	0	d_0	\hat{D}_0		
-1	0	1	0	d_1	\hat{D}_1		
0	0	1	0	d_2	\hat{D}_2		
0	-1	1	0	d_3	\hat{D}_3		
-1	-1	1	0	d_4	\hat{D}_4		
-1	0	0	0	f_0	\hat{F}_0		
0	1	0	0	f_1	\hat{F}_1		
1	0	0	0	f_2	\hat{F}_2		
-1	-1	0	0	f_3	\hat{F}_3		

The fan morphism is the projection on the last two coordinates.

Volker Braun (DIAS)

 $SU(5) \times U(1)$ in F-Theory

Mordell-Weil Group

- The Hodge numbers are $h^{11}(X) = 7$ and $h^{21}(X) = 63$
- Therefore rank MW(X) = 1
- But only one toric section $\sigma_0 = \{f_0 = 0\}$
- What is the generator of MW? Using intersection theory, we guessed

$$[\sigma_1] = [\hat{F}_1 - \hat{F}_0 - \hat{D}_0 - \hat{D}_3 - \hat{D}_4 + \hat{H}_0].$$

• To verify the guess, compute $H^0(X, \mathcal{O}(\sigma_1)) = 1$.

Orientations of I₅ and Two Sections

5–0 split: The SU(5) singlets have minimal U(1) charge one.

- 4–1 split: The SU(5) singlets have U(1) charges in 5Z. The 5 of SU(5) (fundamental representation) have U(1) charge 2, 3 mod 5. The 10 (antisymmetric representation) have U(1) charges 1, 4 mod 5.
- 3–2 split: As 4–1 but fundamentals have charges 1, 4 mod 5 and antisymmetrics have 2, 3 mod 5.

U(1) Charges

- The example is of the 4–1 split type, easy intersection theory computation.
- This fixes the U(1) charge mod 5, but what are the actual U(1) charges?
- The 6-d hypermultiplets come from vanishing curves on the discriminant.
- Their U(1) charge is the intersection

$$U(1)\text{-charge}(C) = C \cap S(\sigma_1) = C \cap \sigma_0 + \sum_{1 \le a, b \le 4} (C \cap \hat{D}_a) \begin{pmatrix} \frac{4}{5} & \frac{3}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{3}{5} & \frac{6}{5} & \frac{4}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} & \frac{6}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} \end{pmatrix}_{ab} (\sigma_1 \cap C_b)$$

Park-Morrison

Codimension-Two Fibers

Need to identify the curves stuck over codimension-two fibers, for example where I_5 degenerates into an I_6 .

- Very explicit: compute location of codimension-two fiber and plug into hypersurface equation.
- Here: projection map

 $\pi: [h_0:h_1:d_0:\ldots:d_4:f_0:\ldots:f_3] \mapsto [h_0:h_1:d_0d_1d_2d_3d_4]$

• For example, look at the $d_0 = 0$ toric fiber component over the point $[h_0 : h_1 : 0]$

The $d_0 = 0$ Toric Fiber Component

$$egin{aligned} &i_0: [d_1:d_2:d_4:f_0:f_1:f_3]\mapsto \ & [h_0:h_1:0:d_1:d_2:1:d_4:f_0:f_1:1:f_3] \end{aligned}$$

Plugging into the Hypersurface Equation

• Over a generic point $[h_0: h_1: 0]$, get

 $p(h_0, h_1, 0, d_1, d_2, 1, d_4, f_0, f_1, 1, f_3) = \beta_0 d_1 d_2^2 d_4 f_1 + \beta_1 d_1 d_2 f_0 f_1^2 + \beta_2 d_2 d_4 f_3 + \beta_3 f_0 f_1 f_3$

2 at 2 distinct codimension-two fibers the coefficient β_2 vanishes and the polynomial factorizes as

$$p(h_0, h_1, 0, d_1, d_2, 1, d_4, f_0, f_1, 1, f_3) = f_1 \times (\beta_0 d_1 d_2^2 d_4 + \beta_1 d_1 d_2 f_0 f_1 + \beta_3 f_0 f_3)$$

 at 3 distinct codimension-two fibers the hypersurface equation factors as

$$p(h_0, h_1, 0, d_1, d_2, 1, d_4, f_0, f_1, 1, f_3) = (\beta'_0 d_1 d_2 f_1 + \beta'_1 f_3) \times (\beta'_2 d_2 d_4 + \beta'_3 f_0 f_1)$$

Codimension-Two Fiber Components

Previous slide: The $d_0 = 0$ node of the extended Dynkin diagram splits in two different ways.

• The pull-back of the Calabi-Yau to the
$$d_0 = 0$$
 fiber component is

$$i_0^*(Y) = V(p) = V(f_0) + V(f_1) + V(f_3)$$

• Over 2 points the fiber component decomposes as $i_0^*(Y) = V(p) = [V(f_1)] + [V(f_0) + V(f_3)],$

and over 3 points the fiber component decomposes as $i_0^*(Y) = V(p) = [V(f_0) + V(f_1)] + [V(f_3)].$

Intersection Numbers of Fibers and Sections

The pull-back of the sections is

$$i_0^*(\sigma_0) = V(f_0),$$

 $i_0^*(\sigma_1) = V(f_3) - V(f_0).$

I_6 component	$ar{C}_0$		$ar{C}_1$	$ar{C}_2$	\bar{C}_3	$ar{C}_4$	\bar{C}_5
Realization	$V(f_0) + V(f_3)$		$V(f_1)$	C_1	C_2	C_3	C_4
$\cap \sigma_0$	0		1	0	0	0	0
$\cap \sigma_1$	1		-1	0	0	1	0
I_6 component	$ \bar{C}_0$	$ar{C}_1$		\bar{C}_2	\bar{C}_3	$ar{C}_4$	\bar{C}_5
Dealization	()	$V(f_0) + V(f_1)$					
Realization	$V(f_3)$	$V(f_0)$ -	$V(f_1)$	C_1	C_2	C_3	C_4
$\cap \sigma_0$	$V(f_3)$ 1	$V(f_0) + $	$+ V(f_1)$	$C_1 \\ 0$	$C_2 \\ 0$	C_3 0	$egin{array}{c} C_4 \ 0 \end{array}$

U(1)-Charges

- The intersection numbers of the stuck curves determine the U(1) charges of the SU(5) matter rep that contains the hyper.
- In the above example, these are $\underline{5}$ of SU(5)
- Plugging into the formula:

$$U(1) - \text{charge}(2 \times \underline{5}) = 1 - 0 + (0 \ 0 \ 0 \ 1) \begin{pmatrix} \frac{4}{5} & \frac{3}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{3}{5} & \frac{6}{5} & \frac{4}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} & \frac{6}{5} & \frac{3}{5} \\ \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \frac{8}{5}$$

• By analogous computation, find complete matter spectrum:

$$2 \times \underline{\mathbf{5}}_8 + 3 \times \underline{\mathbf{5}}_7 + 6 \times \underline{\mathbf{5}}_3 + 8 \times \underline{\mathbf{5}}_2 + 3 \times \underline{\mathbf{10}}_1$$

Introduction

- 2 Weierstrass Model
- **3** Gauge Group

4 Matter

Flat Fibrations

- Want fibrations where all fibers are one-dimensional (otherwise, have tensionless strings)
- Starting with codimension-two fibers (CY 3-fold), the dimension of the fiber can jump up.
- A fibration where all fibers are of the same dimension is called flat.
- Note: flat in the sense of homological algebra, not in the geometric sense.
- As we go up in dimension, this gets more and more restrictive.

Non-Flat Tops

Consider a top with an integral point in the interior of the pentagon facet at height one.

• For an elliptic K3 built from this top, the corresponding divisor is interior to a facet.

- The following are equivalent:
 - Integral point p_i interior to a facet
 - Toric divisor $V(z_i)$ missed by the Calabi-Yau hypersurface
 - Toric divisor $V(z_i)$ such that the restriction of the Calabi-Yau equation is constant.

Non-Flat Top in Calabi-Yau Threefold

If we use this top in a Calabi-Yau threefold:

- The toric fiber is now fibred over the one-dimensional discriminant.
- The hypersurface equation is still constant in the fiber direction on the toric fiber component coresponding to the facet interior point of the top.
- But the facet interior point of the top is not in a facet of the 4-d polytope, so this constant varies along the discriminant.
- Hence, must be zero somewhere.
- There, the whole 2-dimensional toric fiber is part of the Calabi-Yau hypersurface.

The threefold fibration cannot be flat.

Tops in Higher Dimensions

- There are more/different things that can go wrong.
- They do not only depend on the top, but also its embedding in the polytope.
- Most 4-d toric hypersurfaces are not flat elliptic fibrations.

WIP WIP

• Extends to complete intersections as well.