$S U(5) \times U(1)$ F-Theory models from Toric Elliptic Fibrations

Volker Braun

Dublin Institute for Advanced Studies (DIAS)
starting May 1: Oxford University
21. March 2013

2 Weierstrass Model

3 Gauge Group
4. Matter
(5) Flatness

Introduction

Definition (F-Theory)

Defines a (real) ($12-2 d$)-dimensional effective field theory after compactification on elliptically fibered $2 d$-dimensional Calabi-Yau variety.
$T^{2} \longrightarrow Y^{2 d}$ $\underset{\substack{\downarrow \pi \\ B^{2 d-2}}}{\downarrow}$

Gauge group, matter, and Yukawa couplings localized at different dimensions:

- $\operatorname{dim}_{\mathbb{C}} Y=1$: IIB in 10-d
- $\operatorname{dim}_{\mathbb{C}} Y=2$: Degenerate (Kodaira) fibers \Rightarrow Gauge group
- $\operatorname{dim}_{\mathbb{C}} Y=3$: Discriminant components intersect \Rightarrow Matter
- $\operatorname{dim}_{\mathbb{C}} Y=4$: Matter curves intersect \Rightarrow

Yukawa couplings, flux.

(1) Introduction

(2) Weierstrass Model

3 Gauge Group
4) Matter
(5) Flatness

Elliptic Curves

First, look at $\operatorname{dim} Y=1$.

- Can write down CY 1-fold explicitly: $Y=\mathbb{C} /(\mathbb{Z} \oplus \tau \mathbb{Z})$
- But not in higher dimenison, better use embedding in 2-d ambient space
- For example, cubic hypersurface in \mathbb{P}^{2}
- Can always be written in Weierstrass form

$$
y^{2}=x^{3}+a x+b
$$

- Or, more generally, a (crepant resolution of a singular Fano) toric surface

16 Reflexive Polygons

Definition (Reflexive)

A lattice polytope ∇ is called reflexive if its dual Δ is also a lattice polytope.

The blue polygons:

- minimal with respect to removing a vertex (blow-down).
Note: Larger $\nabla \Leftrightarrow$ smaller Δ.
- dual is maximal with respect to inclusion.

$$
\mathbb{P}^{2} \quad \mathbb{P}^{2}[1,1,2] \quad \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Normal Form of a Cubic

Cubic surface:

$$
\sum_{i, j, k} a_{i j k} u^{i} v^{j} w^{k}=0, \quad[u: v: w] \in \mathbb{P}^{2}
$$

The undergrad method:

- Find a flex
- Translate flex to $[0: 1: 0]$

Picking a point (= zero-section) necessary, what if its not a flex?
Better solution:
Artin, Rodriguez-Villegas, Tate

- Switch to the Jacobian $\operatorname{Pic}^{0}(E)$
- Weierstrass parameters $a, b=$ polynomial in $a_{i j k}$.

Weierstrass Form

How to go from this:

$$
P(u, v, w)=\sum_{i+j+k=3} a_{i j k} u^{i} v^{j} w^{k}=0
$$

to this: $y^{2}=x^{3}+f x z^{4}+g z^{6}$ (the Weierstrass form)?

$$
S L_{3} \text {-rotation of }[u: v: w] \text { should not change } f, g .
$$

The Ternary Cubic

A cubic in three variables

$$
P(u, v, w)=\sum_{i+j+k=3} a_{i j k} u^{i} v^{j} w^{k}=0, \quad[u: v: w] \in \mathbb{P}^{2}
$$

has

- two invariants S, T, and
- four covariants $P(u, v, w), H(u, v, w), \Theta(u, v, w)$, and $J(u, v, w)$
satisfying the syzygy

$$
\begin{aligned}
J^{2}= & 4 \Theta^{3}+T P^{2} \Theta^{2}+\Theta\left(-4 S^{3} P^{4}+2 S T P^{3} H-72 S^{2} P^{2} H^{2}\right. \\
& \left.-18 T P H^{3}+108 S H^{4}\right)-16 S^{4} P^{5} H-11 S^{2} T P^{4} H^{2} \\
& -4 T^{2} P^{3} H^{3}+54 S T P^{2} H^{4}-432 S^{2} P H^{5}-27 T H^{6}
\end{aligned}
$$

Weierstrass Form From Invariants

For $P=0$, the syzygy is

$$
J^{2}=4 \Theta^{3}+108 \Theta S H^{4}-27 T H^{6}
$$

so up to some rescaling: $y=J, x=\Theta, z=H, f=S$, and $g=T$.
For example, the Fermat cubic $P=u^{3}+v^{3}+w^{3}$:

$$
\begin{aligned}
\omega: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}[2,3,1] \\
\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right) \mapsto\left(\begin{array}{c}
-u^{3} v^{3}-u^{3} w^{3}-v^{3} w^{3} \\
\frac{1}{2}\left(u^{6} v^{3}-u^{3} v^{6}-u^{6} w^{3}+v^{6} w^{3}+u^{3} w^{6}-v^{3} w^{6}\right) \\
u v w
\end{array}\right)
\end{aligned}
$$

2 Weierstrass Model

(3) Gauge Group

4) Matter
(5) Flatness

Degenerate Fibers

The Weierstrass for an elliptically fibered K3:

$$
y^{2}=x^{3}+a(t) x+b(t)
$$

where t is a coordinate on the base \mathbb{P}^{1}.

- Discriminant is $\delta=4 a^{3}+27 b^{2}=0$
- Non-Abelian gauge group G determined by degree of vanishing of (a, b, δ) at the discriminant.
- Number of $U(1)$-factors $=$ Mordell-Weil rank

$$
\operatorname{rank} M W(Y)+\operatorname{rank}(G)=h^{11}(Y)-h^{11}(B)-1
$$

Toric Fibrations

Toric fibration of toric varieties equivalent to fan morphism

Tops and Bottoms

- K3 as hypersurface in 3-d toric variety from 3-d reflexive polygon
- Fiber $=$ kernel of fan morphism = preimage of origin
- Fiber is one of the 16 reflexive polygons

- Fiber cuts 3-d polytope in two halves (=tops)
- Non-fiber vertices and edges of top form extended Dynkin diagram of gauge group
[Candelas]

A $\operatorname{SU}(5) \mathrm{Top}$

- d_{0}, \ldots, d_{4} form $S U(5)$ extended Dynkin diagram
- Correspond to irreducible toric surfaces in the fiber over torus fixed point
- Hypersurface cuts out I_{5} Kodaira fiber

Toric Sections

- Base of top = fiber polygon
- Base vertices whose two adjacent points are a lattice basis are toric sections
- Here: single toric section $f_{0}=0$

Trivial Top

- For each fiber polygon there is the trivial top with a single point at height 1.

- This means that the fiber over the torus fixed point in the base has only a single irreducible component.
- Cartesian products and bundles are all built with trivial tops.

2 Weierstrass Model

3 Gauge Group

(4) Matter

(5) Flatness

Matter Charges in $S U(5) \times U(1)$ Models

- Try to impose constraints on $S U(5)$ GUT couplings by additional $U(1)$
- Open question: Which $U(1)$ charges can the different $S U(5)$-reps acquire?
- Really question about elliptic CY 3-folds
- We constructed and analyzed a relatively complicated example

VB-Grimm-Keitel

The Toric Data for the Calabi-Yau Threefold X

Point $n_{z} \in \nabla \cap N$				Coordinate z	Divisor $V(z)$
-1	-1	-1	-1	h_{0}	\hat{H}_{0}
0	0	0	1	h_{1}	\hat{H}_{1}
-2	-1	1	0	d_{0}	\hat{D}_{0}
-1	0	1	0	d_{1}	\hat{D}_{1}
0	0	1	0	d_{2}	\hat{D}_{2}
0	-1	1	0	d_{3}	\hat{D}_{3}
-1	-1	1	0	d_{4}	\hat{D}_{4}
-1	0	0	0	f_{0}	\hat{F}_{0}
0	1	0	0	f_{1}	\hat{F}_{1}
1	0	0	0	f_{2}	\hat{F}_{2}
-1	-1	0	0	f_{3}	\hat{F}_{3}

The fan morphism is the projection on the last two coordinates.

Mordell-Weil Group

- The Hodge numbers are $h^{11}(X)=7$ and $h^{21}(X)=63$
- Therefore rank $M W(X)=1$
- But only one toric section $\sigma_{0}=\left\{f_{0}=0\right\}$
- What is the generator of MW? Using intersection theory, we guessed

$$
\left[\sigma_{1}\right]=\left[\hat{F}_{1}-\hat{F}_{0}-\hat{D}_{0}-\hat{D}_{3}-\hat{D}_{4}+\hat{H}_{0}\right]
$$

- To verify the guess, compute $H^{0}\left(X, O\left(\sigma_{1}\right)\right)=1$.

Orientations of I_{5} and Two Sections

5-0 split: The $S U(5)$ singlets have minimal $U(1)$ charge one.
$4-1$ split: The $S U(5)$ singlets have $U(1)$ charges in $5 \mathbb{Z}$. The $\underline{\mathbf{5}}$ of $S U(5)$ (fundamental representation) have $U(1)$ charge $2,3 \bmod 5$. The $\underline{\mathbf{1 0}}$ (antisymmetric representation) have $U(1)$ charges $1,4 \bmod 5$.
3-2 split: As $4-1$ but fundamentals have charges $1,4 \bmod 5$ and antisymmetrics have $2,3 \bmod 5$.

U(1) Charges

- The example is of the 4-1 split type, easy intersection theory computation.
- This fixes the $U(1)$ charge mod 5, but what are the actual $U(1)$ charges?
- The 6-d hypermultiplets come from vanishing curves on the discriminant.
- Their $U(1)$ charge is the intersection

$$
\begin{aligned}
& U(1) \text {-charge }(C)=C \cap S\left(\sigma_{1}\right)= \\
& \quad C \cap \sigma_{1}-C \cap \sigma_{0}+\sum_{1 \leq a, b \leq 4}\left(C \cap \hat{D}_{a}\right)\left(\begin{array}{cccc}
\frac{4}{5} & \frac{3}{5} & \frac{2}{5} & \frac{1}{5} \\
\frac{3}{5} & \frac{6}{5} & \frac{4}{2} \\
\frac{2}{2} & \frac{4}{5} \\
\frac{5}{5} & \frac{6}{5} & \frac{3}{5} \\
\frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5}
\end{array}\right)_{a b}\left(\sigma_{1} \cap C_{b}\right)
\end{aligned}
$$

Park-Morrison

Codimension-Two Fibers

Need to identify the curves stuck over codimension-two fibers, for example where I_{5} degenerates into an I_{6}.

- Very explicit: compute location of codimension-two fiber and plug into hypersurface equation.
- Here: projection map
$\pi:\left[h_{0}: h_{1}: d_{0}: \ldots: d_{4}: f_{0}: \ldots: f_{3}\right] \mapsto\left[h_{0}: h_{1}: d_{0} d_{1} d_{2} d_{3} d_{4}\right]$
- For example, look at the $d_{0}=0$ toric fiber component over the point $\left[h_{0}: h_{1}: 0\right]$

The $d_{0}=0$ Toric Fiber Component

It is embedded as

$$
\begin{aligned}
i_{0}:\left[d_{1}: d_{2}: d_{4}: f_{0}: f_{1}: f_{3}\right] \mapsto & \\
& {\left[h_{0}: h_{1}: 0: d_{1}: d_{2}: 1: d_{4}: f_{0}: f_{1}: 1: f_{3}\right] }
\end{aligned}
$$

Plugging into the Hypersurface Equation

(1) Over a generic point $\left[h_{0}: h_{1}: 0\right]$, get

$$
\begin{aligned}
& p\left(h_{0}, h_{1}, 0, d_{1}, d_{2}, 1, d_{4}, f_{0}, f_{1}, 1, f_{3}\right)= \\
& \quad \beta_{0} d_{1} d_{2}^{2} d_{4} f_{1}+\beta_{1} d_{1} d_{2} f_{0} f_{1}^{2}+\beta_{2} d_{2} d_{4} f_{3}+\beta_{3} f_{0} f_{1} f_{3}
\end{aligned}
$$

(2) at 2 distinct codimension-two fibers the coefficient β_{2} vanishes and the polynomial factorizes as

$$
\begin{aligned}
p\left(h_{0}, h_{1}, 0, d_{1}, d_{2}, 1,\right. & \left.d_{4}, f_{0}, f_{1}, 1, f_{3}\right)= \\
& f_{1} \times\left(\beta_{0} d_{1} d_{2}^{2} d_{4}+\beta_{1} d_{1} d_{2} f_{0} f_{1}+\beta_{3} f_{0} f_{3}\right)
\end{aligned}
$$

(3) at 3 distinct codimension-two fibers the hypersurface equation factors as

$$
\begin{aligned}
p\left(h_{0}, h_{1}, 0, d_{1}, d_{2}, 1,\right. & \left.d_{4}, f_{0}, f_{1}, 1, f_{3}\right)= \\
& \left(\beta_{0}^{\prime} d_{1} d_{2} f_{1}+\beta_{1}^{\prime} f_{3}\right) \times\left(\beta_{2}^{\prime} d_{2} d_{4}+\beta_{3}^{\prime} f_{0} f_{1}\right)
\end{aligned}
$$

Codimension-Two Fiber Components

Previous slide: The $d_{0}=0$ node of the extended Dynkin diagram splits in two different ways.
(1) The pull-back of the Calabi-Yau to the $d_{0}=0$ fiber component is

$$
i_{0}^{*}(Y)=V(p)=V\left(f_{0}\right)+V\left(f_{1}\right)+V\left(f_{3}\right)
$$

(1) Over 2 points the fiber component decomposes as

$$
i_{0}^{*}(Y)=V(p)=\left[V\left(f_{1}\right)\right]+\left[V\left(f_{0}\right)+V\left(f_{3}\right)\right]
$$

(2) and over 3 points the fiber component decomposes as

$$
i_{0}^{*}(Y)=V(p)=\left[V\left(f_{0}\right)+V\left(f_{1}\right)\right]+\left[V\left(f_{3}\right)\right]
$$

Intersection Numbers of Fibers and Sections

The pull-back of the sections is

$$
\begin{aligned}
& i_{0}^{*}\left(\sigma_{0}\right)=V\left(f_{0}\right), \\
& i_{0}^{*}\left(\sigma_{1}\right)=V\left(f_{3}\right)-V\left(f_{0}\right)
\end{aligned}
$$

I_{6} component	\bar{C}_{0}	\bar{C}_{1}	\bar{C}_{2}	\bar{C}_{3}	\bar{C}_{4}	\bar{C}_{5}
Realization	$V\left(f_{0}\right)+V\left(f_{3}\right)$	$V\left(f_{1}\right)$	C_{1}	C_{2}	C_{3}	C_{4}
$\cap \sigma_{0}$	0	1	0	0	0	0
$\cap \sigma_{1}$	1	-1	0	0	1	0

I_{6} component	\bar{C}_{0}	\bar{C}_{1}	\bar{C}_{2}	\bar{C}_{3}	\bar{C}_{4}	\bar{C}_{5}
Realization	$V\left(f_{3}\right)$	$V\left(f_{0}\right)+V\left(f_{1}\right)$	C_{1}	C_{2}	C_{3}	C_{4}
$\cap \sigma_{0}$	1	0	0	0	0	0
$\cap \sigma_{1}$	-1	1	0	0	1	0

$\boldsymbol{U}(\mathbf{1})$-Charges

- The intersection numbers of the stuck curves determine the $U(1)$ charges of the $S U(5)$ matter rep that contains the hyper.
- In the above example, these are $\underline{5}$ of $S U(5)$
- Plugging into the formula:

$$
U(1)-\operatorname{charge}(2 \times \underline{\mathbf{5}})=1-0+\left(\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{4}{5} & \frac{3}{5} & \frac{2}{5} \\
\frac{1}{5} \\
\frac{3}{5} & \frac{6}{5} & \frac{4}{5} \\
\frac{2}{5} \\
\frac{2}{5} & \frac{4}{5} & \frac{6}{5} \\
\frac{1}{5} & \frac{3}{5} \\
\frac{1}{5} & \frac{3}{5} & \frac{4}{5}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\frac{8}{5}
$$

- By analogous computation, find complete matter spectrum:

$$
2 \times \underline{\mathbf{5}}_{8}+3 \times \underline{\mathbf{5}}_{7}+6 \times \underline{\mathbf{5}}_{3}+8 \times \underline{\mathbf{5}}_{2}+3 \times \underline{\mathbf{1 0}}_{1}
$$

2 Weierstrass Model

3 Gauge Group
4. Matter

(5) Flatness

Flat Fibrations

- Want fibrations where all fibers are one-dimensional (otherwise, have tensionless strings)
- Starting with codimension-two fibers (CY 3-fold), the dimension of the fiber can jump up.
- A fibration where all fibers are of the same dimension is called flat.
- Note: flat in the sense of homological algebra, not in the geometric sense.
- As we go up in dimension, this gets more and more restrictive.

Non-Flat Tops

Consider a top with an integral point in the interior of the pentagon facet at height one.

- For an elliptic K3 built from this top, the corresponding divisor is interior to a facet.

- The following are equivalent:
- Integral point p_{i} interior to a facet
- Toric divisor $V\left(z_{i}\right)$ missed by the Calabi-Yau hypersurface
- Toric divisor $V\left(z_{i}\right)$ such that the restriction of the Calabi-Yau equation is constant.

Non-Flat Top in Calabi-Yau Threefold

If we use this top in a Calabi-Yau threefold:

- The toric fiber is now fibred over the one-dimensional discriminant.
- The hypersurface equation is still constant in the fiber direction on the toric fiber component coresponding to the facet interior point of the top.
- But the facet interior point of the top is not in a facet of the 4-d polytope, so this constant varies along the discriminant.
- Hence, must be zero somewhere.
- There, the whole 2-dimensional toric fiber is part of the Calabi-Yau hypersurface.
The threefold fibration cannot be flat.

Tops in Higher Dimensions

- There are more/different things that can go wrong.
- They do not only depend on the top, but also its embedding in the polytope.
- Most 4-d toric hypersurfaces are not flat elliptic fibrations.
- Extends to complete intersections as well.

