The Geometry of N = 2 Flux Backgrounds

Daniel Waldram Imperial College, London

Joint ERC workshop "MassTeV, Superfields and Strings & Gravity" 16 October 2013

to appear

<ロ> <四> <四> <日> <日> <日</p>

э

Daniel Waldram Imperial College, London

The problem

Type II on M_6 with N = 2

- what is geometry of generic flux background?
- can one find moduli?

integrable structure in (exceptional) generalized geometry

Introduction	Gauged hypermultiplets in $N = 2$	$E_{7(7)} \times \mathbb{R}^+$ generalised geometry	Hypermultiplet structures	Conclusions
00000				

Calabi–Yau

Moduli spaces well understood

$$dJ = 0 h^{1,1}$$

$$d\Omega = 0 h^{2,1}$$

with harmonic B, C^{\pm}

		type IIA	type IIB
hypers	quaternionic Kähler	$\Omega + C^{-}$	$J + B + C^+$
vectors	special Kähler	J + B	Ω

・ロト ・回ト ・ヨト ・ヨト

ъ.

2

What about generic N = 2 flux backgrounds?

- analogues of J and Ω? differential conditions?
- finite dimensional? cohomology?

Introduction	Gauged hypermultiplets in $N = 2$	$E_{7(7)} \times \mathbb{R}^+$ generalised geometry	Hypermultiplet structures	Conclusions
000000				

One approach: *G* structures

 $GL(6,\mathbb{R})$ action on frames $v^{\mu} = v^{a}\hat{e}^{\mu}_{a}$

$$\label{eq:generalized_structure} \begin{split} \mathrm{d}J &\simeq \mathsf{flux} & Sp(3,\mathbb{R}) \text{ structure} \\ \mathrm{d}\Omega &\simeq \mathsf{flux} & SL(3,\mathbb{C}) \text{ structure} \end{split}$$

- complete classification, new solutions
- lack of integrability means moduli hard; global issues

[Gauntlett, Martelli, DW,..., Cardoso et al,...]

"Generalised" G structure

- extend notion of structure
- new object is integrable

conditions from N = 2 gauged supergravity ...

[c.f. GMTP, Koerber & Martucci, Tomasiello; GLSW, Graña & Orsi, Graña & Triendl]

Introduction

Gauged hypermultiplets in N = 2

 $E_{7(7)} imes \mathbb{R}^+$ generalised geometry

Hypermultiplet structures

Conclusions

Daniel Waldram Imperial College, London The Geometry of N = 2 Flux Backgrounds

Gauged hypermultiplets

Multiplets

hypers : (ζ_{α}, q^{u}) four scalars vectors : $(A_{\mu}, \lambda^{A}, t)$ complex scalar

Hypermultiplet manifold (*n* hypers)

 M_H is quaternionic-Kähler manifold

and M_H is 4n-dimensional

Swann space X: R^4 bundle over M_H

X is hyper-Kähler manifold

with triplet of symplectic structures Ω_a , a = 1, 2, 3

Gauging by vector multiplets

action of Lie group G on X preserving Ω_a

isometries of HK metric so $\partial_\mu q^u o D_\mu q^u$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ ● のへの

Daniel Waldram Imperial College, London

Moment map

Infinitesimally G acts by Lie derivative $\rho : \mathfrak{g} \to TX$ so for all $\xi \in \mathfrak{g}$

$$0 = \mathcal{L}_{\rho(\xi)}\Omega_{a} = \mathrm{d}(i_{\rho(\xi)}\Omega_{a})$$

Moment maps $\mu_a: X \to \mathfrak{g}^*$ such that

$$\mathrm{d}\mu_{a}(\xi)=i_{\rho(\xi)}\Omega_{a}$$

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Daniel Waldram Imperial College, London The Geometry of N = 2 Flux Backgrounds

N = 2 supersymmetric vacuum

Gaugino and gravitino variation (hyperino constrains vector mult.) [*Hristov*, *Looyestijin & Vandoren; Louis, Smyth & Triendl*]

$$\delta\psi_{\mu} = \delta\lambda = 0 \qquad \Longleftrightarrow \qquad \mu_{a}(\xi) = 0 \quad \forall\xi$$

form hyper-Kähler quotient

$$X'=\mu_1^{-1}(0)\cap\mu_2^{-1}(0)\cap\mu_3^{-1}(0)/G$$

(日) (同) (三) (三)

э

X' is still hyper-Kähler (still Swann bundle)

Daniel Waldram Imperial College, London

Can be infinite dimensional... (eg Atiyah-Bott)

• X = space of gauge connections on Riemann surface

3

- G = group of gauge transformations
- $\mu = F$, field strength
- X' = moduli space of flat connections

Hitchin's equations, Hermitian-Yang-Mills equations, Kähler-Einstein (Donaldson), ...

 $E_{7(7)} \times \mathbb{R}^+$ generalised geometry [CSW, from Hitchin, Gualtieri]

Type II warped dimensional reduction

$$\mathrm{d} s_{10}^2 = \mathrm{e}^{2\Delta} \mathrm{d} s^2(\mathbb{R}^{3,1}) + \mathrm{d} s_6^2(M),$$

all fields $\{g, \phi, B, \tilde{B}, C^{\pm}, \Delta\}$ on M

Goal: new geometrical description

- unify bosonic symmetries and fields into single objects
- enhanced local SU(8) symmetry

[c.f. Julia, de Wit & Nicolai, ..., Siegel; Hull, Hohm & Zweibach, ..., Berman & Perry, ...]

Introduction	Gauged hypermultiplets in $N = 2$	$E_{7(7)} \times \mathbb{R}^+$ generalised geometry	Hypermultiplet structures	Conclusions
000000	00000	0000		000

Generalised tangent space [Hull; Pacheco & DW]

$$E \simeq TM \oplus T^*M \oplus \Lambda^5 T^*M \oplus \Lambda^{\pm} T^*M \oplus (T^*M \otimes \Lambda^6 T^*M)$$
$$V^M = (v^m, \lambda_m, \tilde{\lambda}_{m_1 \cdots_5}, \lambda_{\cdots}^{\pm}, \dots)$$

parametrises infinitesimal symmetries - diffeos and gauge transf

$E_{7(7)} \times \mathbb{R}^+$ structure

Unique $E_{7(7)} \times \mathbb{R}^+ \supset GL(6, \mathbb{R})^{\pm}$ action on frames $V^M = V^A \hat{E}^M_A$

$$E \sim 56_1$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

where
$$\mathbb{R}^+$$
 weight is $\mathbf{1_p} \sim (\det T^*M)^{p/2}$

Daniel Waldram Imperial College, London

Introduction	Gauged hypermultiplets in $N = 2$	$E_{7(7)} \times \mathbb{R}^+$ generalised geometry	Hypermultiplet structures	Conclusions
000000	00000	00000		000

Generalised tensors: $E_{7(7)} \times \mathbb{R}^+$ representations

For example, adjoint includes potentials

$$133_0 \sim (TM \otimes T^*M) \oplus \Lambda^2 T^*M \oplus \Lambda^6 T^*M \oplus \Lambda^{\pm} T^*M \oplus \dots$$
$$A^M{}_N = (a^m{}_n, B_{mn}, \tilde{B}_{m_1\dots m_6}, C^{\pm}_{\dots}, \dots)$$

Dorfman derivative

Given $V \in E$, there is a generalisation of Lie derivative

 $L_V = diffeo. + gauge transformation$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Daniel Waldram Imperial College, London

Generalised geometry and supergravity [CSW]

Generalised metric

 G_{MN} invariant under $SU(8) \subset E_{7(7)} imes \mathbb{R}^+$ equivalent to $\{g, \phi, B, \tilde{B}, C^{\pm}, \Delta\}$

Generalised connection (c.f. Levi-Civita)

Define
$$D_M V^N = \partial_M V^N + \Omega_M {}^N{}_P V^P$$

exists gen. torsion-free connection D with DG = 0

but not unique, (torsion
$$\sim$$
 912 + 56)

Daniel Waldram Imperial College, London

Bosonic action

Analogue of Ricci tensor is unique

$$S_{\rm B} = \int_{M} |{\rm vol}_G| R$$
 eom = gen. Ricci flat

where
$$|\mathrm{vol}_G| = (\det G)^{-1/28} = \sqrt{g} \mathrm{e}^{2\Delta}$$

Leading-order fermions and supersymmetry

• • • • • • • • • • • • •

3 x 3

unique operators, full theory has local SU(8) invariance

Daniel Waldram Imperial College, London

Hypermultiplet structures

Conventional G structures

 $g \in GL(d, \mathbb{R})/O(d)$ $J \in GL(2n, \mathbb{R})/Sp(n)$ $\Omega \in GL(2n, \mathbb{R})/SL(n, \mathbb{C})$

 $E_{7(7)} \times \mathbb{R}^+$ generalised structures

 $G \in \mathbb{R}^+ \times E_{7(7)} / SU(8)$

(日) (同) (三) (三)

3

Daniel Waldram Imperial College, London

Gauged hypermultiplets in $N = 2$	$E_{7(7)} \times \mathbb{R}^+$ generalised geometry	Hypermultiplet structures	Conclusions
		00000000000	

Generalised complex structures [Hitchin, Gualtieri]

Take
$$E = TM \oplus T^*M$$

 $\Phi^{\pm} \in \mathbb{R}^+ \times O(6,6)/SU(3,3)$
spinor $\Phi^{\pm} \in S^{\pm}(E) \simeq \Lambda^{\pm}T^*M$
 $J \longrightarrow \Phi^+ = e^{-\phi}e^{-B-iJ}$
 $\Omega \longrightarrow \Phi^- = e^{-\phi}e^{-B}(\Omega_1 + \Omega_3 + \Omega_5)$

if no RR fields N = 2 implies integrability $d\Phi^{\pm} = 0$ [GMPT]

Ξ.

Hypermultiplet structures [GLSW]

 $\{J_a\} \in \mathbb{R}^+ \times E_{7(7)} / Spin^*(12)$

where $\{J_a\} \sim 133_1$ are $SU(2)_R$ triplet

$$[J_a, J_b] = 2\kappa \epsilon_{abc} J_c$$

Tr $(J_a J_b) = -\kappa^2 \delta_{ab} \in \det T^* M$

・ロト ・四ト ・ヨト ・ヨト

3

for Calabi–Yau gives Ω in type IIA and J in type IIB

Daniel Waldram Imperial College, London The Geometry of N = 2 Flux Backgrounds

Introduction 000000	Gauged hypermultiplets in $N = 2$ 00000	$E_{7(7)} imes \mathbb{R}^+$ generalised geometry 00000	Hypermultiplet structures	Conclusions 000

Example: complex structure in IIA

$$133_0 \sim (TM \otimes T^*M) \oplus \Lambda^2 T^*M \oplus \Lambda^6 T^*M \oplus \Lambda^- T^*M \oplus \dots$$
$$A^M{}_N = (a^m{}_n, B_{mn}, \tilde{B}_{m_1\dots m_6}, C_m, C_{mnp}, \dots)$$

defines triplet with $J_{\pm}=J_1\pm {\rm i}J_2$

 $J_+ \sim \Omega$ $J_- \sim \bar{\Omega}$ $J_3 \sim I$

where $I^2 = -1$.

Daniel Waldram Imperial College, London The Geometry of N = 2 Flux Backgrounds

Space of hypermultiplet structures X

Infinite-dimensional space of sections

 $\{J_a(x)\} \in X$

tangent space $\{v_a(x)\} \in TX$ where

$$v_a(x) = \delta J_a(x) = [\alpha(x), J_a(x)]$$
 $\alpha(x) \in \mathfrak{e}_{7(7)} + \mathbb{R}$

hyper-Kähler (Swann space) structure (c.f. Wolf space)

$$\Omega_a(v,w) = \epsilon_{abc} \int_M \operatorname{Tr}(v_b w_c)$$

э

Daniel Waldram Imperial College, London

Introduction 000000	Gauged hypermultiplets in $N = 2$ 00000	$E_{7(7)} \times \mathbb{R}^+$ generalised geometry 00000	Hypermultiplet structures	Conclusions 000

Relation to gauged N = 2 supergravity

Rewrite type II supergravity as N = 2, d = 4 theory

- keep all KK modes
- ► X is infinite dimensional space of hypermultiplets

for supersymmetric vacuum we need to know

what is the gauging?

Momentum maps

G = diffeos and gauge transformations

Infinitesimally generated by the Dorfman derivative, so $V \in E$ parameterise Lie algebra

$$\rho(V) = \{L_V J_a\} \in TX$$

and we find

$$\mu_{a}(V) = -\frac{1}{2}\epsilon_{abc}\int \operatorname{Tr}\left(J_{b}\,L_{V}J_{c}\right)$$

3

Daniel Waldram Imperial College, London

Example: complex structure in IIA

With
$$V = (v, \lambda, \tilde{\lambda}, \lambda^+, \tau)$$

 $\mu_+(V) \sim \int \Omega \wedge d\lambda_2$
 $\mu_3(V) \sim \int \mathcal{L}_v \Omega \wedge \bar{\Omega} - \Omega \wedge \mathcal{L}_v \bar{\Omega}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ●

Daniel Waldram Imperial College, London

Integrability and moduli space

N = 2 supersymmetric vacuum integrability conditions just

 $\mu_a(V) = 0$ for all $V \in E$

Since structures related by a diffeo or gauge transformation are equivalent

 $\mathcal{M} = \mu_1^{-1}(0) \cap \mu_2^{-1}(0) \cap \mu_3^{-1}(0) / G$

gives the moduli space of structures, and is automatically hyper-Kähler (Swann) space

Examples

O(6,6) decomposition

It is useful to use the $SL(2,\mathbb{R}) \times O(6,6) \subset E_{7(7)}$ decomposition

$$\begin{aligned} \mathbf{133} &= (\mathbf{3}, \mathbf{1}) + (\mathbf{1}, \mathbf{66}) + (\mathbf{2}, \mathbf{32}^{\pm}) \\ \alpha &= (\alpha^{i}{}_{j}, \alpha^{A}{}_{B}, \alpha^{i\pm}) \end{aligned}$$

where

$$egin{aligned} \mathbf{2} &\sim (\det T^*M)^{-1/2} \oplus (\det T^*M)^{1/2} \ \mathbf{12} &\sim TM \oplus T^*M \ \mathbf{32}^{\pm} &\sim \Lambda^{\pm}T^*M \end{aligned}$$

Ξ.

Daniel Waldram Imperial College, London

Introduction 000000	Gauged hypermultiplets in $N = 2$ 00000	$E_{7(7)} imes \mathbb{R}^+$ generalised geometry 00000	Hypermultiplet structures	Conclusions

Pure spinor

$$J_{+} = J_{1} + \mathrm{i}J_{2} = (0, 0, u^{i}\Phi^{\pm})$$
 $u^{i} = \begin{pmatrix} \mathrm{i}\kappa \\ -\kappa^{-1} \end{pmatrix}$

defines $\{J_a\}$ where $\kappa^2 = i \left< \Phi^{\pm}, \bar{\Phi}^{\pm} \right>$ (Mukai pairing)

$$\begin{split} \mu_{\pm}(V) &= \int \left\langle \Lambda^{\mp}, \mathrm{d} \Phi^{\pm} \right\rangle \\ \mu_{3}(V) &= \int \left\langle \mathrm{d} \bar{\Phi}^{\pm}, i_{\nu} \Phi^{\pm} \right\rangle - \left\langle \bar{\Phi}^{\pm}, i_{\nu} \mathrm{d} \Phi^{\pm} \right\rangle \\ &- \left\langle \mathrm{d} \bar{\Phi}^{\pm}, \Lambda \wedge \Phi^{\pm} \right\rangle - \left\langle \bar{\Phi}^{\pm}, \Lambda \wedge \mathrm{d} \Phi^{\pm} \right\rangle \end{split}$$

vanishes iff $\mathrm{d}\Phi^{\pm}=0$

Daniel Waldram Imperial College, London

D3 brane on $HK_4 \times \mathbb{R}^2$

$$\mathrm{d}s^{2}(M) = \mathrm{e}^{2A} \left(\mathrm{d}s_{\mathsf{HK}}^{2} + \mathrm{d}x^{2} + \mathrm{d}y^{2} \right) \qquad \Delta \neq 0 \qquad C_{4} \neq 0$$

then $\{J_a\} = \{e^{C_a} \widehat{J}_a\}$ where $\widehat{J}_a{}^i{}_j = 0$ and

$$\widehat{J}_{a}{}^{A}{}_{B} = \frac{1}{2}\kappa \begin{pmatrix} j_{a} & 0\\ 0 & -j_{a}^{T} \end{pmatrix} \qquad \widehat{J}_{a}{}^{i+} = \frac{1}{2}\kappa \begin{pmatrix} e^{4A}\omega_{a} \wedge dx \wedge dy\\ -e^{-4A}\kappa^{-2}\omega_{a} \end{pmatrix}$$

and

 $\mu(V)_a = 0$ iff $A = \Delta$, $F_5 = \frac{1}{4} * d(e^{-4\Delta})$

・ロト ・回ト ・ヨト ・ヨト

э.

Daniel Waldram Imperial College, London

Vector multiplet

 $K \in \mathbb{R}^+ \times E_{7(7)} / E_{6(2)}$

where $K \sim \mathbf{56_1}$ with compatibility

$$J_a \cdot K = 0, \qquad \sqrt{Q(K)} = \kappa^2$$

Infinite-dimensional special Kähler metric with integrability

$$L_{K+\mathrm{i}\hat{K}}J_a=0$$

イロト イポト イヨト イヨト

э

"K is generalised tri-holomorphic Killing vector"

Introduction Gauged hypermultiplets in N = 2 $E_{7(7)} \times \mathbb{R}^+$ generalised geometry Hypermultiplet structures conclusions 00000 00000000000 \bullet 00

Conclusions

► same construction works for N = 2 reductions of 11d supergravity, just different decomposition

$$E \simeq TM \oplus \Lambda^2 T^*M \oplus \Lambda^5 T^*M \oplus (T^*M \otimes \Lambda^7 T^*M)$$

series of HK hypermultiplet structure spaces

$$egin{aligned} \mathbb{R}^+ imes E_{7(7)} \,/\, Spin^*(12) \ \mathbb{R}^+ imes E_{6(6)} \,/\, SU^*(6) \ \mathbb{R}^+ imes Spin(5,5) /\, SU(2) imes Spin(1,5) \end{aligned}$$

(日) (同) (三) (三)

э

for reductions to 4, 5 and 6 dim from IIA/B or 11d

Introduction 000000	Gauged hypermultiplets in $N = 2$ 00000	$E_{7(7)} imes \mathbb{R}^+$ generalised geometry 00000	Hypermultiplet structures	Conclusions

conventionally

 $\mathrm{d}\Omega=0\quad +\quad \text{mod out diffeos}$

here HK-quotient encodes both

first example of

full diffeo group in quotient

(gauge transformation, Hamiltonian symplectomorphism, ...)

 extending to generalised structures simplifies moduli space problem (no obstructions, ...)

Introduction 000000	Gauged hypermultiplets in $N = 2$ 00000	$E_{7(7)} \times \mathbb{R}^+$	generalised geometry	Hypermultiplet structures	Conclusions

for infinitesimal deformations, part of complex

$$\dots \longrightarrow E \xrightarrow{L.J_a} TX \xrightarrow{d\mu_a} E^* \otimes \mathfrak{su}(2) \longrightarrow \dots$$

elliptic (\mathcal{M} finite dimensional)? cohomology?

- ► U-duality extension A and B top string Kähler/Kodaira-Spencer gravity → moment map
- generic 5d N = 1 AdS/CFT backgrounds ...

Daniel Waldram Imperial College, London