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The problem

Type II on M6 with N = 2

I what is geometry of generic flux background?

I can one find moduli?

integrable structure in (exceptional) generalized geometry
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Calabi–Yau

Moduli spaces well understood

dJ = 0 h1,1

dΩ = 0 h2,1

with harmonic B, C±

type IIA type IIB

hypers quaternionic Kähler Ω + C− J + B + C+

vectors special Kähler J + B Ω
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What about generic N = 2 flux backgrounds?

I analogues of J and Ω? differential conditions?

I finite dimensional? cohomology?
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One approach: G structures

GL(6,R) action on frames vµ = vaêµa

dJ ' flux Sp(3,R) structure

dΩ ' flux SL(3,C) structure

I complete classification, new solutions

I lack of integrability means moduli hard; global issues

[Gauntlett, Martelli, DW,. . . , Cardoso et al,. . . ]
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“Generalised” G structure

I extend notion of structure

I new object is integrable

conditions from N = 2 gauged supergravity . . .

[c.f. GMTP, Koerber & Martucci, Tomasiello; GLSW, Graña &
Orsi, Graña & Triendl ]
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Gauged hypermultiplets

Multiplets

hypers : (ζα, q
u) four scalars

vectors : (Aµ, λ
A, t) complex scalar

Hypermultiplet manifold (n hypers)

MH is quaternionic-Kähler manifold

and MH is 4n-dimensional
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Swann space X : R4 bundle over MH

X is hyper-Kähler manifold

with triplet of symplectic structures Ωa, a = 1, 2, 3

Gauging by vector multiplets

action of Lie group G on X preserving Ωa

isometries of HK metric so ∂µq
u → Dµq

u
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Moment map

Infinitesimally G acts by Lie derivative ρ : g→ TX so for all ξ ∈ g

0 = Lρ(ξ)Ωa = d(iρ(ξ)Ωa)

Moment maps µa : X → g∗ such that

dµa(ξ) = iρ(ξ)Ωa
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N = 2 supersymmetric vacuum

Gaugino and gravitino variation (hyperino constrains vector mult.)
[Hristov, Looyestijin & Vandoren; Louis, Smyth & Triendl ]

δψµ = δλ = 0 ⇐⇒ µa(ξ) = 0 ∀ξ

form hyper-Kähler quotient

X ′ = µ−1
1 (0) ∩ µ−1

2 (0) ∩ µ−1
3 (0)/G

X ′ is still hyper-Kähler (still Swann bundle)
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Can be infinite dimensional... (eg Atiyah–Bott)

I X = space of gauge connections on Riemann surface

I G = group of gauge transformations

I µ = F , field strength

I X ′ = moduli space of flat connections

Hitchin’s equations, Hermitian-Yang-Mills equations,
Kähler-Einstein (Donaldson), . . .
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E7(7)×R+ generalised geometry [CSW, from Hitchin, Gualtieri ]

Type II warped dimensional reduction

ds2
10 = e2∆ds2(R3,1) + ds2

6 (M),

all fields {g , φ,B, B̃,C±,∆} on M

Goal: new geometrical description

I unify bosonic symmetries and fields into single objects

I enhanced local SU(8) symmetry

[c.f. Julia, de Wit & Nicolai, . . . , Siegel; Hull, Hohm & Zweibach,
. . . , Berman & Perry, . . . ]
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Generalised tangent space [Hull; Pacheco & DW ]

E ' TM ⊕ T ∗M ⊕ Λ5T ∗M ⊕ Λ±T ∗M ⊕ (T ∗M ⊗ Λ6T ∗M)

VM = (vm, λm, λ̃m1···5 , λ
±
···, . . . )

parametrises infinitesimal symmetries – diffeos and gauge transf

E7(7)×R+ structure

Unique E7(7)×R+ ⊃ GL(6,R)± action on frames VM = V AÊM
A

E ∼ 561

where R+ weight is 1p ∼ (detT ∗M)p/2
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Generalised tensors: E7(7)×R+ representations

For example, adjoint includes potentials

1330 ∼ (TM ⊗ T ∗M)⊕ Λ2T ∗M ⊕ Λ6T ∗M ⊕ Λ±T ∗M ⊕ . . .
AM

N = (amn,Bmn, B̃m1...m6 ,C
±
··· , . . . )

Dorfman derivative

Given V ∈ E , there is a generalisation of Lie derivative

LV = diffeo. + gauge transformation
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Generalised geometry and supergravity [CSW ]

Generalised metric

GMN invariant under SU(8) ⊂ E7(7)×R+

equivalent to {g , φ,B, B̃,C±,∆}

Generalised connection (c.f. Levi-Civita)

Define DMVN = ∂MVN + ΩM
N
PV

P

exists gen. torsion-free connection D with DG = 0

but not unique, (torsion ∼ 912 + 56)
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Bosonic action

Analogue of Ricci tensor is unique

SB =

∫
M
|volG |R eom = gen. Ricci flat

where |volG | = (detG )−1/28 =
√
ge2∆

Leading-order fermions and supersymmetry

/Dψ + D g ρ = 0 δψ = D g ε etc

unique operators, full theory has local SU(8) invariance
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Hypermultiplet structures

Conventional G structures

g ∈ GL(d ,R)/O(d)

J ∈ GL(2n,R)/ Sp(n)

Ω ∈ GL(2n,R)/ SL(n,C)

E7(7)×R+ generalised structures

G ∈ R+ × E7(7) /SU(8)
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Generalised complex structures [Hitchin, Gualtieri ]

Take E = TM ⊕ T ∗M

Φ± ∈ R+ × O(6, 6)/ SU(3, 3)

spinor Φ± ∈ S±(E ) ' Λ±T ∗M

J −→ Φ+ = e−φe−B−iJ

Ω −→ Φ− = e−φe−B (Ω1 + Ω3 + Ω5)

if no RR fields N = 2 implies integrability dΦ± = 0 [GMPT ]
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Hypermultiplet structures [GLSW ]

{Ja} ∈ R+ × E7(7) / Spin
∗(12)

where {Ja} ∼ 1331 are SU(2)R triplet

[Ja, Jb] = 2κεabcJc

Tr (JaJb) = −κ2δab ∈ detT ∗M

for Calabi–Yau gives Ω in type IIA and J in type IIB
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Example: complex structure in IIA

1330 ∼ (TM ⊗ T ∗M)⊕ Λ2T ∗M ⊕ Λ6T ∗M ⊕ Λ−T ∗M ⊕ . . .
AM

N = (amn,Bmn, B̃m1...m6 ,Cm,Cmnp, . . . )

defines triplet with J± = J1 ± iJ2

J+ ∼ Ω J− ∼ Ω̄ J3 ∼ I

where I 2 = −1.

Daniel Waldram Imperial College, London

The Geometry of N = 2 Flux Backgrounds



Introduction Gauged hypermultiplets in N = 2 E7(7) ×R+ generalised geometry Hypermultiplet structures Conclusions

Space of hypermultiplet structures X

Infinite-dimensional space of sections

{Ja(x)} ∈ X

tangent space {va(x)} ∈ TX where

va(x) = δJa(x) = [α(x), Ja(x)] α(x) ∈ e7(7) + R

hyper-Kähler (Swann space) structure (c.f. Wolf space)

Ωa(v ,w) = εabc

∫
M

Tr (vbwc)
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Relation to gauged N = 2 supergravity

Rewrite type II supergravity as N = 2, d = 4 theory

I keep all KK modes

I X is infinite dimensional space of hypermultiplets

for supersymmetric vacuum we need to know

what is the gauging?
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Momentum maps

G = diffeos and gauge transformations

Infinitesimally generated by the Dorfman derivative, so V ∈ E
parameterise Lie algebra

ρ(V ) = {LV Ja} ∈ TX

and we find

µa(V ) = −1
2εabc

∫
Tr (Jb LV Jc)
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Example: complex structure in IIA

With V = (v , λ, λ̃, λ+, τ)

µ+(V ) ∼
∫

Ω ∧ dλ2

µ3(V ) ∼
∫
LvΩ ∧ Ω̄− Ω ∧ Lv Ω̄
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Integrability and moduli space

N = 2 supersymmetric vacuum integrability conditions just

µa(V ) = 0 for all V ∈ E

Since structures related by a diffeo or gauge transformation are
equivalent

M = µ−1
1 (0) ∩ µ−1

2 (0) ∩ µ−1
3 (0)/G

gives the moduli space of structures, and is automatically
hyper-Kähler (Swann) space
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Examples

O(6, 6) decomposition

It is useful to use the SL(2,R)× O(6, 6) ⊂ E7(7) decomposition

133 = (3, 1) + (1, 66) + (2, 32±)

α = (αi
j , α

A
B , α

i±)

where

2 ∼ (detT ∗M)−1/2 ⊕ (detT ∗M)1/2

12 ∼ TM ⊕ T ∗M

32± ∼ Λ±T ∗M
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Pure spinor

J+ = J1 + iJ2 = (0, 0, uiΦ±) ui =

(
iκ
−κ−1

)
defines {Ja} where κ2 = i

〈
Φ±, Φ̄±

〉
(Mukai pairing)

µ+(V ) =

∫ 〈
Λ∓, dΦ±

〉
µ3(V ) =

∫ 〈
dΦ̄±, ivΦ±

〉
−
〈
Φ̄±, ivdΦ±

〉
−
〈
dΦ̄±,Λ ∧ Φ±

〉
−
〈
Φ̄±,Λ ∧ dΦ±

〉
vanishes iff dΦ± = 0
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D3 brane on HK4 × R2

ds2(M) = e2A
(
ds2

HK + dx2 + dy2
)

∆ 6= 0 C4 6= 0

then {Ja} = {eC4 Ĵa} where Ĵa
i
j = 0 and

Ĵa
A
B = 1

2κ

(
ja 0
0 −jTa

)
Ĵa

i+
= 1

2κ

(
e4Aωa ∧ dx ∧ dy
−e−4Aκ−2ωa

)
and

µ(V )a = 0 iff A = ∆, F5 = 1
4 ∗ d(e−4∆)

Daniel Waldram Imperial College, London

The Geometry of N = 2 Flux Backgrounds



Introduction Gauged hypermultiplets in N = 2 E7(7) ×R+ generalised geometry Hypermultiplet structures Conclusions

Vector multiplet

K ∈ R+ × E7(7) /E6(2)

where K ∼ 561 with compatibility

Ja · K = 0,
√

Q(K ) = κ2

Infinite-dimensional special Kähler metric with integrability

LK+iK̂Ja = 0

“K is generalised tri-holomorphic Killing vector”
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Conclusions

I same construction works for N = 2 reductions of 11d
supergravity, just different decomposition

E ' TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ (T ∗M ⊗ Λ7T ∗M)

I series of HK hypermultiplet structure spaces

R+ × E7(7) /Spin
∗(12)

R+ × E6(6) / SU
∗(6)

R+ × Spin(5, 5)/ SU(2)× Spin(1, 5)

for reductions to 4, 5 and 6 dim from IIA/B or 11d
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I conventionally

dΩ = 0 + mod out diffeos

here HK-quotient encodes both

I first example of

full diffeo group in quotient

(gauge transformation, Hamiltonian symplectomorphism, . . . )

I extending to generalised structures simplifies moduli space
problem (no obstructions, . . . )
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I for infinitesimal deformations, part of complex

. . . −−−−→ E
L·Ja−−−−→ TX

dµa−−−−→ E ∗ ⊗ su(2) −−−−→ . . . .

elliptic (M finite dimensional)? cohomology?

I U-duality extension A and B top string

Kähler/Kodaira-Spencer gravity −→ moment map

I generic 5d N = 1 AdS/CFT backgrounds . . .

Daniel Waldram Imperial College, London

The Geometry of N = 2 Flux Backgrounds


	Introduction
	Gauged hypermultiplets in N=2
	`39`42`"613A``45`47`"603AE7(7)R+ generalised geometry
	Hypermultiplet structures
	Conclusions

