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OUTLINE

• Toroidal flux vacua and their T-dual faces:

Closed string non-geometry ↔ non-commutativity/non-associativity.

• Magnetic field analogue of non-geometry in Maxwell-Dirac theory:

– Non-commutativity/non-associativity of momenta induced by ~B.

– The fate of angular symmetry (classical and quantum).

• Deformation theory and cohomology:

3-cocycles in Lie algebra and group cohomology.

• Construction of star-product in phase space:

– Substitute for canonical quantization.

– Application to T-dual faces of closed string flux vacua.

• Further generalizations, discussion and conclusions.



TOROIDAL FLUX MODELS

It has been established that non-geometric closed string backgrounds

exhibit non-commutativity/non-associativity among their coordinates.

The prime example is provided by backgrounds originating from torus

T 3 with constant H-flux

H3 = H dX1 ∧ dX2 ∧ dX3

satisfying the standard quantization condition

1

4π2

∫
H = k , k ∈ Z .

Choose the components of the anti-symmetric B-filed, H3 = dB, as



B12 = Hx3, B23 = 0 = B31

and perform T-duality, successively, thinking of T 3 as T n fibration over

the base space T 3−n for n = 0, 1, 2, 3.

• H-flux model, which is the original geometric background (n = 0).

The toroidal coordinates are commuting,

[xi, xj] = 0.

• f-flux model, which follows by performing T-duality in x1-direction

T 1
x1

(n = 1). The resulting background is the Heisenberg nilmanifold

(twisted torus) and it is fully geometric. It exhibits the relations

[x1, x̃2] ∼ fp̃3.



• Q-flux model, which follows by performing T-duality in x1 and x2

directions T 2
x1,x2

(n = 2). The resulting background is geometric only

locally but not globally, since the fibre is glued by T-duality when

transported around the base. It exhibits the commutation relations

[x1, x2] ∼ Qp̃3.

– The geometry has already become non-commutative.

• R-flux model, which follows by performing T-duality in all directions

T 3
x1,x2,x3

(n = 3). The resulting background is entirely non-geometric and

it exhibits the commutation relations

[x1, x2] ∼ Rp3.

– The geometry has become non-associative.



It is more convenient to work with symmetric choice of B-field

B12 =
H

3
x3, B23 =

H

3
x1, B31 =

H

3
x2.

Then, the commutation relations among xi and x̃i take the form

H : [xi, xj] = 0, [xi, x̃j] = 0, [x̃i, x̃j] = iHεijkp̃k,

f : [xi, xj] = 0, [x̃i, x̃j] = 0, [xi, x̃j] = ifεijkp̃k,

Q : [x̃i, x̃j] = 0, [xi, x̃j] = 0, [xi, xj] = iQεijkp̃k,

R : [x̃i, x̃j] = 0, [xi, x̃j] = 0, [xi, xj] = iRεijkpk.



MAGNETIC FIELD ANALOGUE OF NC/NA

A spinless point-particle (e, m) in magnetic field background ~B(~x)

has commutation relations among its coordinates and momenta:

[xi, pj] = iδij, [xi, xj] = 0, [pi, pj] = ie εijkBk(~x)

leading to non-commutativity of pi in Maxwell theory, ~∇ · ~B = 0.

In Dirac’s generalization of Maxwell theory we have ~∇ · ~B 6= 0 and

[[pi, pj], pk] + cyclic ≡ [pi, pj, pk] = −e εijk~∇ · ~B 6= 0

Associativity of momenta is lost in the presence of magnetic charges.

This provides a simple model for NC/NA of string theory with xi ↔ pi.



Consider a continuous spherically symmetric distribution of magnetic

charge in space, ρ(x), to study (some of) the implications of NC/NA

in classical and quantum theory. Setting x2 = ~x · ~x, we have

~∇ · ~B = ρ(x), ~∇× ~B = 0 (static).

The particular solution of the inhomogeneous equation is expressed as

~B(~x) =
~x

f (x)
, ρ(x) =

3f (x)− xf ′(x)

f2(x)
.

Some notable example are:

• f (x) = x3/g so that ρ(x) = 4πg δ(x) [Dirac monopole with charge g]

• f (x) = 3/ρ so that ρ(x) = ρ is constant [cf parabolic flux model]

Study the dynamics of point-particle for general profile function f(x).



Using the Hamiltonian H = ~p · ~p/2m, the Lorentz force acting on the

spinless particle (e,m) in the magnetic field background is

d~p

dt
= i[H, ~p ] =

e

2m
(~p× ~B − ~B × ~p )

which for ~B(~x) = ~x/f (x) takes the special form

d2~x

dt2
= − e

mf (x)

(
~x× d~x

dt

)
.

Lorentz force is proportional to angular momentum and does no work.

Energy conservation provides one integral of motion, E = A/2m.

Simple manipulation shows that x2(t) = At2 + D, setting x2(0) = D.

[D provides the closest distance to the origin (perihelion of trajectory)]

Complete integrability requires three more integrals of motion.



For general choices of profile function f (x), however, there are no

additional integrals, since

d

dt

(
~x× d~x

dt

)
= − e

mf (x)
~x×

(
~x× d~x

dt

)
=

e x3

mf (x)

dx̂

dt
.

Angular symmetry is broken in the presence of magnetic charges!

The only exception is the Dirac monopole having f (x) = x3/g. In this

case, the improved angular momentum ~J = m~K is conserved, where

~K ≡ ~x× d~x

dt
− eg

m
x̂

is the celebrated Poincaré vector.

In all other case, including constant f (x), angular symmetry is broken

and the classical motion of the particle appears to be non-integrable.



Trajectory of a spinless particle in the field of a magnetic monopole:

the charged particle (e,m) precesses with angular velocity ~K/(At2 + D)

• The magnetic monopole g is located at the tip of the cone

• The Poincaré vector ~K provides the axis of the cone

• ~K · x̂ = −eg/m determines the opening angle of the cone



ANOTHER LOOK AT ANGULAR SYMMETRY

Try to follow as closely as possible the conventional definitions and

algebraic structures of particle dynamics, without assuming particular

representations nor Hilbert space [only that ~p acts as derivation].

Assume that ~x and ~p form a complete and irreducible set of observables

for the point-particle in a static magnetic field ~B(~x).

Angular momentum ~J ought to satisfy the algebraic relations

[J i, xj ] = iεijk xk, [J i, pj ] = iεijk pk, [J i, Jj ] = iεijk Jk

so that angular momentum is conserved, [H, J i] = 0, in the background

of any spherically symmetric magnetic field ~B(~x).



Let ~J be the orbital angular momentum, plus an improvement term

that accounts for the angular momentum of the electromagnetic field

~J = ~x× ~p− ~C.

Then, we obtain the following conditions for ~C

[xi, Cj ] = 0, [pi, Cj ] = ie
(
xiBj − δij(~x · ~B)

)
,

Ci = exi(~x · ~B) +
i

2
εijk [Cj, Ck ].

The only consistent solution corresponds to the magnetic field of a

Dirac monopole, in which case J = ~x× ~p− eg x̂ [Poincaré vector].



Non-associativity is responsible for the violation of angular symmetry.

The apparent violation of non-associativity in a Dirac monopole field

is eliminated by imposing the boundary conditions Ψ(0) = 0 on the

wave-functions so that ~p (derivations) are represented by self-adjoint

operators, even though they are defined in patches as ~p = −i∇− e ~A.

Rotations by an angle θ around an axis n̂ (take n̂ = x̂) are described by

R(n̂ = x̂, θ) = e−iθ x̂·
~J = e−ieg θ.

Then, for a point-particle in a monopole field, single valuedness of R

(up to a sign) yields Dirac’s quantization condition eg = n ∈ Z (×~/2).

Finite translations in space also associate when eg is quantized.

In all other cases, non-associativity is for real, obstructing canonical

quantization. What can be used as substitute? −→ star-product.



DEFORMATIONS AND COHOMOLOGY

For definiteness we focus on the R-flux closed string model.

Introduce (on dimensional grounds) the two physical constants, namely

Planck’s constant ~ and string length ls =
√
α′. We have

[xi, xj] ∼ l3sRε
ijkpk, [xi, pj] = i~δij, [pi, pj] = 0

whereas the dual coordinates and momenta satisfy the standard

commutation relations

[x̃i, x̃j] = 0, [x̃i, p̃j] = i~δij, [p̃i, p̃j] = 0.

Associator/Jacobiator does not vanish when either ~ or ls are not zero.

[x1, x2, x3] ≡ [[x1, x2], x3] + cycl. perm. ∼ ~l3sR.



Different contractions of commutation relations of R-flux model:

ls = 0, ~ = 0: [xi, xj] = 0, [xi, pj] = 0 (Algebra of translations t6)

ls = 0, ~ 6= 0: [xi, xj] = 0, [xi, pj] = i~δij (Heisenberg algebra g)

ls 6= 0, ~ = 0: [xi, xj] ∼ l3sε
ijkpk, [xi, pj] = 0 (3-central extension of t3)

whereas in all cases the momenta commute, [pi, pj] = 0.

The algebra of the R-flux model (and likewise that of the point-particle

in ~B ∼ ~x, letting ~x↔ ~p) is deformation of the Lie algebras above.

Lie algebra cohomology characterizes the deformation that leads to

non-associativity — Chevalley-Eilenberg cohomology

• cochains of Abelian algebra t6 with real values — H∗(t6, R)

• cochains of Heisenberg algebra g with values in g — H∗(g, g)



H∗(t6, R): Let TI = xi, pi the generators of t6. Consider a 3-cochain

with c3(x
1, x2, x3) = 1, up to normalization, and c3(TI, TJ , TK) = 0 for all

other choices of generators (i.e., when at least one T is p). We have

[TI , TJ , TK ] ∼ c3(TI , TJ , TK)

and, thus, only the associator [x1, x2, x2] does not vanish.

The obstruction satisfies the 3-cocycle condition dc3(TI, TJ , TK, TL) = 0,

since for any four elements of t6 we have

c3([TI , TJ ], TK, TL)−c3([TI , TK ], TJ , TL)+c3([TI , TL], TJ , TK)+

c3([TJ , TK ], TI , TL)−c3([TJ , TL], TI , TK)+c3([TK, TL], TI , TJ) = 0

• c3 is not a coboundary, i.e., c3 6= df2 in H∗(t6, R).



H∗(g, g): Let c2(x
i, xj) = εijkpk, up to a multiplicative constant, and

c2(x
i, pj) = 0 = c2(p

i, pj). Acting with the coboundary operator, we obtain

dc2(x1, x2, x3) = −c2([x1, x2], x3)+c2([x1, x3], x2)−c2([x2, x3], x1)

+π(x1)c2(x2, x3)− π(x2)c2(x1, x3) + π(x3)c2(x1, x2)

where π(g) = Adg = [g, · ]. Then, for the Heisenberg algebra, we have

dc2(x1, x2, x3) = [x1, c2(x2, x3)]− [x2, c2(x1, x3)] + [x3, c2(x1, x2)]

leading to alternative cohomological interpretation of non-associativity

[x1, x2, x3] ∼ dc2(x1, x2, x3)

• The cohomological interpretation depends on the module (R vs g).



LIE GROUP COHOMOLOGY

Exponentiate the action of the position and momentum generators.

The formal group elements

U(~a, ~b) = ei(~a·~x+~b·~p)

satisfy the composition law, obtained by applying BCH formula,

U(~a1,~b1)U(~a2,~b2) = e−
i
2(~a1·~b2−~a2·~b1) e−i

R
2 (~a1×~a2)·~p U(~a1+~a2, ~b1+~b2).

Successive composition of any three group elements Ui = U(~ai,~bi) yields

(U1 U2) U3 = e−i
R
2 (~a1×~a2)·~a3 U1 (U2 U3)

which do not associate when R 6= 0.



If R were zero, we would have a projective representation of the

Abelian group of translations in phase space. The phase factor

ϕ2(~a1,~b1;~a2,~b2) = ~a1 ·~b2 − ~a2 ·~b1
is a real-valued 2-cocycle in group cohomology, satisfying

dϕ2(~a1,~a2,~a3) ≡ ϕ2(~a2,~a3)−ϕ2(~a1+~a2,~a3)+ϕ2(~a1,~a2+~a3)−ϕ2(~a1,~a2) = 0.

If R 6= 0, there is an additional p-dependent factor in the composition

law that gives rise to a phase in the associator of three group elements

ϕ3(~a1,~a2,~a2) = (~a1 × ~a2) · ~a3

• ϕ2 does not show up in the associator because dϕ2 = 0.



The new phase is a real-valued 3-cocycle in the cohomology of the

Abelian group of translations in phase space, satisfying

dϕ3(~a1,~a2,~a3,~a4) ≡ ϕ3(~a2,~a3,~a4)− ϕ3(~a1 + ~a2,~a3,~a4)+

ϕ3(~a1,~a2 + ~a3,~a4)− ϕ3(~a1,~a2,~a3 + ~a4) + ϕ3(~a1,~a2,~a2) = 0 .

A schematic representation is provided by Mac Lane’s pentagon:

(U1U2)(U3U4)

U1(U2(U3U4)) ((U1U2)U3)U4

U1((U2U3)U4) (U1(U2U3))U4



~a

~b

~a1

~a2

~a3

Geometric interpretation of the non-trivial cocycles ϕ2 and ϕ3:

Area(~a,~b) =
1

2
|~a×~b|

Volume(~a1,~a2,~a3) =
1

6
|(~a1 × ~a2) · ~a3|



ALTERNATIVE INTERPRETATION of non-associativity is provided

by the cohomology of Heisenberg-Weyl group with cochains taking

values in the Heisenberg algebra. Introducing the elements

UW (g) = ei(~a·~x+~b·~p+c1)

the group composition law U(~a1,~b1)U(~a1,~b1) takes the form

UW (g1) UW (g2) = e−i
R
2ϕ2(g1,g2) UW (g1g2)

where ϕ2(g1, g2) = (~a1 × ~a2) · ~p takes values in the Heisenberg algebra.

Then, the obstruction to associativity assumes the coboundary form

(~a1 × ~a2) · ~a3 = dϕ2(g1, g2, g3).

As before, the cohomological interpretation depends on the module.



THE STAR PRODUCT

When R = 0, all classical observables f (x, p) are assigned to operators

F̂ (x̂, p̂) acting on Hilbert space H. Their product is non-commutative

but associative.

An equivalent description is provided by Moyal star-product in phase

space: Fourier analyse

f (~x, ~p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)ei(~a·~x+~b·~p)

and apply Weyl’s correspondence rule to assign self-adjoint operators

F̂ (~̂x, ~̂p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)Û(~a,~b)



where

Û(~a, ~b) = ei(~a·~̂x+~b·~̂p).

The product of any two operators takes the form

F̂1·F̂2 =
1

(2π)6

∫
d3a1d

3b1d
3a2d

3b2 f̃1(~a1,~b1)f̃2(~a2,~b2)Û(~a1, ~b1)Û(~a2, ~b2)

and it can be worked out using the composition law

Û(~a1, ~b1)Û(~a2, ~b2) = e−
i
2(~a1·~b2−~a2·~b1)Û(~a1 + ~a2, ~b1 +~b2).

The 2-cocycle ϕ2(~a1,~b1;~a1,~b1) = ~a1 ·~b2 − ~a2 ·~b1 makes the product of the

corresponding phase space functions non-commutative but associative.

The result turns out to be



(f1?f2)(~x, ~p) = e
i
2

(
~∇x1·~∇p2−~∇x2·~∇p1

)
f1(~x1, ~p1)f2(~x2, ~p2)|~x1=~x2=~x; ~p1=~p2=~p

giving rise to the series expansion

(f1 ? f2)(~x, ~p) = (f1 · f2)(~x, ~p) +
i

2
{f1, f2} + · · · .

Non-commutative geometry: the notion of point becomes fuzzy.

Quantum dynamics is equivalently described by the Moyal bracket

{{f1, f2}} ≡ −i(f1 ? f2 − f2 ? f1) = {f1, f2} + higher derivatives

acting as derivation

{{f1, f2 ? f3}} = f2 ? {{f1, f3}} + {{f1, f2}} ? f3.



When R 6= 0, the rules of canonical quantization do not apply, but it is

still possible to define a star-product non-commutative/non-associative.

We follow the same line of thought as before, assigning to f (~x, ~p)

F (~x, ~p) =
1

(2π)3

∫
d3ad3b f̃ (~a,~b)U(~a,~b),

and using the generalized composition law,

U(~a1,~b1)U(~a2,~b2) = e−
i
2(~a1·~b2−~a2·~b1) e−i

R
2 (~a1×~a2)·~p U(~a1+~a2, ~b1+~b2).

The result is the NC/NA p-dependent star-product

(f1 ?p f2)(~x, ~p) = ei
R
2 ~p·(~∇x1×~∇x2)e

i
2

(
~∇x1·~∇p2−~∇x2·~∇p1

)
f1(~x1, ~p1)f2(~x2, ~p2)|~x1=~x2=~x; ~p1=~p2=~p .



The substitute for quantum dynamics is provided by the bracket

{{f1, f2}}p ≡ −i(f1 ?p f2 − f2 ?p f1)

which does not act as derivation, i.e.,

{{f1, f2 ?p f3}}p 6= f2 ?p {{f1, f3}}p + {{f1, f2}}p ?p f3.

A related result is that the associator/Jacobiator does not vanish

{{f1(x), f2(x), f3(x)}}p 6= 0.

• The star-product extends naturally to double phase space (x, p; x̃, p̃)

by combining ?p-product in (x, p) with Moyal product in (x̃, p̃).

• Symmetries appear to be broken as consequence of non-associativity.



SUMMARY/CONCLUSIONS/QUESTIONS

• Non-geometric closed string backgrounds exhibit NC/NA

• T-folds, double field theory, generalized geometry should be advanced

further to accommodate old and new structure on equal footing

• Exploit deformation theory of Lie algebras in relation to deformation

theory of complex structures

• Systematic generalization to other backgrounds (e.g., with elliptic

monodromies)

• Relevance of NC/NA to coordinate dependent compactification of

string theory and gauged supergravities



.

THANK YOU!


