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Introduction/Motivation

Planck scale quantum geometry

Heuristic argument: quantum + gravity

“The gravitational field generated by the concentration of energy
required to localize an event in spacetime should not be so strong as to
hide the event itself to a distant observer.”

I fundamental length scale, spacetime uncertainty ∆x ≥ lP

I uncertainty principle
?←→ noncommutative spacetime structure

Strings and noncommutative geometry

I D-brane + B-field → noncommutative space

I noncommutative gauge theory, Seiberg-Witten maps

I NC Standard Model, GUTs, bundles and gerbes
Chu, Ho (1998), Schomerus (1999), Seiberg, Witten (1999)

Jurco, Madore, Schraml, PS, Wess (2000) + many more



Introduction/Motivation

in closed string background. . .

open string noncommutative gauge theory

I 2+1 points on boundary of disk: ordering

I 2-tensor (B-field) ⇒ noncommutative 2-bracket

I quantization: ?-product

closed string nonassociative gravity?

I 3+1 points on sphere: orientation

I 3-tensor ⇒ nonassociative 3-bracket
Blumenhagen, Plauschinn (2010), Lüst (2010)

I quantization? (yes: dynamical ?-product)

I SW map? (yes: several types)

I non-constant backgrounds? (possible)



Introduction/Motivation

Previously: nonassociative gauge theory and noncommutative gravity

I NC gauge theory with 3-form H = dB 6= 0 ⇒ nonassociative
spacetime; locally described by associative algebras & NC gerbes

Cornalbe, Schiappa (2002); Aschieri, Bakovic, Jurco, PS (2010)

I Noncommutative gravity, General Relativity on noncommutative
spacetime; exact solutions: fuzzy black holes

Aschieri, Blohmann, Dimitrijevic, Meyer, PS, Wess (2005)

Solodukhin, PS (2009)



Introduction/Motivation

Flux compactification
Relating string theory to observably phenomenology and cosmology
requires compactification. Fluxes stabilize moduli and can lead to
generalized geometric structures; patching by string symmetries.

Non-geometric flux backgrounds
T-dualizing a 3-torus with 3-form H-flux gives rise to geometric and
non-geometric fluxes Habc −→ f a

bc −→ Qab
c −→ Rabc

Hull (2005)

Shelton, Taylor, Wecht (2005)

Q-flux: momentum and winding modes mix → T-folds
R-flux: only beginning to understand its (non)geometry
→ non-commutative non-associative structures

Lüst (2010), Blumenhagen, Plauschinn (2010)

Blumenhagen, Deser, Lüst, Plauschinn, Rennecke (2011)



Introduction/Motivation

Outline

I AKSZ sigma-models for geometric and non-geometric backgrounds

I Quantization ⇒ non-commutative non-associative geometry

I Seiberg-Witten-type maps, dynamical star product

I Remarks on Nambu-Poisson structures



AKSZ sigma-models

AKSZ construction: action functionals in BV formalism of sigma model
QFT’s for symplectic Lie n-algebroids E

Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97)

Poisson sigma model
2-dimensional topological field theory, E = T ∗M

S
(1)
AKSZ =

∫
Σ2

(
ξi ∧ dX i +

1

2
Θij(X ) ξi ∧ ξj

)
,

with Θ = 1
2 Θij(x) ∂i ∧ ∂j , ξ = (ξi ) ∈ Ω1(Σ2,X

∗T ∗M)

perturbative expansion ⇒ Kontsevich formality maps

(valid on-shell ([Θ,Θ]S = 0) as well as off-shell, e.g. twisted Poisson)



AKSZ sigma-models

Courant sigma model
TFT with 3-dimensional membrane world volume Σ3

S
(2)
AKSZ =

∫
Σ3

(
φi ∧ dX i +

1

2
hIJ α

I ∧ dαJ − PI
i (X )φi ∧ αI

+
1

6
TIJK (X )αI ∧ αJ ∧ αK

)
with embeddings X : Σ3 → M, 1-form α, aux. 2-form φ, fibre metric h,
anchor matrix P, 3-form T .

standard Courant algebroid:
C = TM ⊕ T ∗M with natural frame (%i , χ

i ), metric 〈%i , χj〉 = δi
j



H-space sigma-model

H-space sigma-model
relevant for geometric flux compactifications: C = TM ⊕ T ∗M twisted
by 3-form flux H = 1

6 Hijk(x)dx i ∧ dx j ∧ dxk

H-twisted Courant–Dorfman bracket[
(Y1, α1) , (Y2, α2)

]
H

:=
(
[Y1,Y2]TM , LY1α2 − LY2α1

− 1
2 d
(
α2(Y1) − α1(Y2)

)
+ H(Y1,Y2,−)

)
metric: natural dual pairing〈

(Y1, α1) , (Y2, α2)
〉

= α2(Y1) + α1(Y2)

anchor map: projection ρ : C → TM
non-trivial bracket and 3-bracket

[%i , %j ]H = Hijk χ
k , [%i , %j , %k ]H = Hijk



H-space sigma-model

H-space sigma-model action

S
(2)
WZ =

∫
Σ3

(
φi ∧dX i +αi ∧dξi −φi ∧αi +

1

6
Hijk(X )αi ∧αj ∧αk

)
.

where (αI ) = (α1, . . . , α2d) ≡ (α1, . . . , αd , ξ1, . . . , ξd)

If Σ2 := ∂Σ3 6= ∅, we can add a boundary term ⇒
boundary/bulk open topological membrane action

S̃
(2)
WZ = S

(2)
WZ +

∫
Σ2

1

2
Θij(X ) ξi ∧ ξj .

(other boundary terms are possible, but will not be considered here)



H-space sigma-model

H-twisted Poisson sigma-model
Integrating out the two-form fields φi yields the AKSZ action

S̃
(1)
AKSZ =

∫
Σ2

(
ξi ∧ dX i +

1

2
Θij(X ) ξi ∧ ξj

)
+

∫
Σ3

1

6
Hijk(X )dX i ∧ dX j ∧ dX k ,

which is the action of the H-twisted Poisson sigma-model with target
space M. Consistency of the equations of motion require Θ to be
H-twisted Poisson, i.e.

[Θ,Θ]S =
∧3Θ](H) 6= 0

⇒ the Jacobi identity for the bracket is violated.



R-space sigma-model

From H to Q to R
Closed strings in Q-space via two T-duality transformations on 3-torus
T3; locally filtration of T2 over S1, globally not well-defined (T-fold).
Closed string world sheet C = R× S1, coordinates (σ0, σ1), winding
number p̃3, twisted boundary conditions at σ′1.

Closed string non-commutativity expressed via Poisson brackets:

{x i , x j}Q = Q ij
k p̃ k and {x i , p̃ j}Q = 0 = {p̃ i , p̃ j}Q

Another T-duality transformation sends Q ij
k 7→ R ijk , p̃k 7→ pk and the

Poisson brackets to the twisted Poisson structure

{x i , x j}Θ = R ijk pk , {x i , pj}Θ = δi j and {pi , pj}Θ = 0 .

Lüst (2010,2012)



R-space sigma-model

The hidden open string
CFT computation: insert twist field at σ′1 ∈ S1 → generates branch cut

There are indications that the appropriate R-space theory is a membrane
sigma model, not a string theory:

I open strings do not decouple from gravity in R-space

I membrane theory geometrizes the non-geometric R-flux background

⇒ extend world sheet C to membrane world volume Σ3 = R× (S1 ×R);
resulting branch surface can be interpreted as open string world sheet:

σ′ 1

σ1

σ1

σ2

σ2

C Σ3

I

Σ2

I

closed ↔ open string duality



R-space sigma-model

R-space sigma-model
General Courant sigma-model with standard Courant algebroid
C = TM ⊕ T ∗M, twisted by a trivector flux R = 1

6 R ijk(x) ∂i ∧ ∂j ∧ ∂k .

Roytenberg’s R-twisted Courant-Dorfman bracket[
(Y1, α1) , (Y2, α2)

]
R

:=
(
[Y1,Y2]TM + R(α1, α2,−) ,

LY1α2 − LY2α1 − 1
2 d
(
α2(Y1) − α1(Y2)

))
non-trivial bracket and 3-bracket

[χi , χj ]R = R ijk %k , [χi , χj , χk ]R = R ijk .



R-space sigma-model

R-space sigma-model action

S
(2)
R =

∫
Σ3

(
φi ∧

(
dX i − αi

)
+ αi ∧ dξi +

1

6
R ijk(X ) ξi ∧ ξj ∧ ξk

)
+

1

2

∫
Σ2

g ij(X ) ξi ∧ ∗ξj ,

where we have added a non-topological term involving g ij , to ensure
consistency of R ijk 6= 0.

Integrating out the 2-form field φ yields:

S
(2)
R =

∫
Σ2

ξi∧dX i +

∫
Σ3

1

6
R ijk(X ) ξi∧ξj∧ξk +

∫
Σ2

1

2
g ij(X ) ξi∧∗ξj .

assume now constant R ijk and g ij and consider e.o.m. for X . . .



R-space sigma-model

⇒ ξi = dPi and the action reduces to a pure boundary action:

S
(2)
R =

∫
Σ2

(
dPi ∧dX i +

1

2
R ijk Pi dPj ∧dPk

)
+

∫
Σ2

1

2
g ij dPi ∧∗dPj ,

which can be rewritten as

S
(2)
R =

∫
Σ2

−1

2
Θ−1

IJ (X )dX I ∧ dX J +

∫
Σ2

1

2
gIJ dX I ∧ ∗dX J ,

with

Θ−1 =
(
Θ−1

IJ

)
=

(
0 −δi j
δi j R ijk pk

)
,

(
gIJ

)
=

(
0 0
0 g ij

)
and X = (X I ) = (X 1, . . . ,X 2d) := (X 1, . . . ,X d ,P1, . . . ,Pd).

⇒ effective target space = phase space

The “closed string metric” gIJ acts only on momentum space.



R-space sigma-model

Linearized action
Generalized Poisson sigma-model

S
(2)
R =

∫
Σ2

(
ηI ∧ dX I +

1

2
ΘIJ(X ) ηI ∧ ηJ

)
+

∫
Σ2

1

2
G IJ ηI ∧ ∗ηJ ,

with auxiliary fields ηI and

Θ =
(
ΘIJ
)

=

(
R ijk pk δi j
−δi j 0

)
,

(
G IJ
)

=

(
g ij 0
0 0

)
obeying the usual closed-open string relations, w.r.t. Θ−1 and g .

In phase-space component form:

S
(2)
R =

∫
Σ2

(
ηi∧dX i+πi∧dPi+

1

2
R ijk Pk ηi∧ηj+ηi∧πi

)
+

∫
Σ2

1

2
g ij ηi∧∗ηj ,

with (ηI ) = (η1, . . . , η2d) ≡ (η1, . . . , ηd , π
1, . . . , πd).



R-space sigma-model

Non-commutative, non-associative phase space
Θ is an H-twisted Poisson bi-vector: [Θ,Θ]S =

∧3Θ](H), where

H = 1
6 R ijk dpi ∧ dpj ∧ dpk = dB , and B = 1

6 R ijk pk dpi ∧ dpj .

Twisted Poisson brackets

{x i , x j}Θ = R ijk pk , {x i , pj}Θ = δi j and {pi , pj}Θ = 0 .

Corresponding Jacobiator:

{x i , x j , xk}Θ = R ijk ,

where {x I , xJ , xK}Θ := [Θ,Θ]S(x I , xJ , xK ) = ΠIJK and

(
ΠIJK

)
=

1

3

(
ΘKL ∂LΘIJ + ΘIL ∂LΘJK + ΘJL ∂LΘKI

)
=

(
R ijk 0

0 0

)
.



Quantization

Path integral quantization
Mapping the open string endpoints to finite values and imposing natural
boundary conditions, we are let to the following schematic functional
integrals that reproduce Kontsevich’s graphical expansion of global
deformation quantization. For multivector fields Xr of degree kr :

Un(X1, . . . ,Xn)(f1, . . . , fm)(x) =

∫
e

i
~ S

(2)
R SX1 · · · SXn Ox(f1, . . . , fm) ,

where m = 2− 2n +
∑

r kr , SXr = i
~
∫

Σ2

1
kr ! X

I1...Ir
r (X ) ηI1 · · · ηIr , and

Ox(f1, . . . , fm) =

∫
X (∞)=x

[
f1

(
X (q1)

)
· · · fm

(
X (qm)

)](m−2)

,

with 1 = q1 > q2 > · · · > qm = 0 and ∞ distinct points on the boundary
of the disk ∂Σ2; the path integrals are weighted with the full gauge-fixed
action and the integrations taken over all fields including ghosts.

Cattaneo, Felder (2000)



Quantization

Kontsevich formality maps
Un maps n multivector fields to a differential operator

Un(X1, . . . ,Xn) =
∑
Γ∈Gn

wΓ DΓ(X1, . . . ,Xn) ,

where the sum is over all possible diagrams with weight

wΓ =
1

(2π)2n+m−2

∫
Hn

n∧
i=1

(
dφhe1

i
∧ · · · ∧ dφh

e
ki
i

)
.

The star product and the 3-bracket are given by

f ? g =
∞∑
n=0

( i ~)n

n!
Un(Θ, . . . ,Θ)(f , g) =: Φ(Θ)(f , g) ,

[f , g , h]? =
∞∑
n=0

( i ~)n

n!
Un+1(Π,Θ, . . . ,Θ)(f , g , h) =: Φ(Π)(f , g , h) .



Quantization

Relevant diagrams involve the bivector Θ = 1
2 ΘIJ∂I ∧ ∂J . . .

θ1

ψ1
p1

θ1

ψ1

θ2

ψ2

p1

p2



Quantization

. . . and the trivector Π = 1
6 ΠIJK∂I ∧ ∂J ∧ ∂K = dΘΘ = [Θ,Θ]S :

θ

ψ

φ

p1

For constant Π all other diagrams factorize and their weights can be
expressed in terms of these three diagrams (up to permutations).



Quantization

Formality condition
The Un define L∞-morphisms and satisfy

d·Un(X1, . . . ,Xn) +
1

2

∑
ItJ=(1,...,n)
I,J 6=∅

εX (I,J )
[
U|I|(XI) , U|J |(XJ )

]
G

=
∑
i<j

(−1)αij Un−1

(
[Xi ,Xj ]S,X1, . . . , X̂i , . . . , X̂j , . . . ,Xn

)
,

relating Schouten brackets to Gerstenhaber brackets.
Kontsevich (1997)

This implies in particular

d?Φ(Θ) = i ~Φ(dΘΘ) ,

which explicitly quantifies the lack of associativity of the star product:

(f ? g) ? h − f ? (g ? h) = ~
2 i [f , g , h]? = ~

2 i Φ(Π)(f , g , h) .



Quantization

The formality condition implies derivation properties:

I For a function h, the Hamiltonian vector field dΘh = {−, h} is
mapped to the inner derivation d?h = i

~ [ h ,−]? = i~Φ(dΘh), where

h = Φ(h) ≡
∑∞

n=0
( i ~)n

n! Un+1(h,Θ, . . . ,Θ).

I A Poisson structure preserving vector field X (dΘX = 0) is mapped

to a differential operator X =
∑∞

n=0
( i ~)n

n! Un+1(X ,Θ, . . . ,Θ)
satisfying X (f ? g) = X (f ) ? g + f ? X (g).

I The formality condition d?Φ(Π) = i~Φ(dΘΠ) and higher derivation
properties encode quantum analogs of the derivation property and
fundamental identity for a Nambu-Poisson structure.

I In particular, in the present case, where dΘΠ = 0:

[f ?g , h, k]?−[f , g ?h, k]?+[f , g , h?k]? = f ?[g , h, k]?+[f , g , h]??k .



Quantization

Explicit formulas

I Dynamical non-associative star product: f ? g ≡ f ?p g , with

f ?p g = ·
[
e

i ~
2 R ijk pk ∂i⊗∂j e

i ~
2

(
∂i⊗∂̃ i−∂̃ i⊗∂i

)
(f ⊗ g)

]
I Replacing the dynamical variable p with a constant p̃ we obtain an

associative Moyal-Weyl type star product ?̃ := ?p̃.

I Triple products and 3-bracket:

(f ? g) ? h =
[
?̃
(

exp
(~2

4 R ijk ∂i ⊗ ∂j ⊗ ∂k
)
(f ⊗ g ⊗ h)

) ]
p̃→p

[f , g , h]? =
4 i

~

[
?̃
(

sinh
(~2

4 R ijk ∂i ⊗ ∂j ⊗ ∂k
)
(f ⊗ g ⊗ h)

) ]
p̃→p

I Trace property:
∫

[f , g , h]? = 0



Seiberg-Witten maps

Seiberg-Witten map
The map from ordinary to NC gauge theory is related to the equivalence
map D of star products ?, ?′ and is a quantum analog of Moser’s lemma.

Let F = dA and ρ the flow generated by the vector field AΘ = Θ(A,−):

B :

ρMoser

��

Θ

ρ

��

quantization // ?

D
��

B + F : Θ′
quantization // ?′

where Θ′ = Θ(1 + ~F Θ)−1 and D(f ?′ g) = Df ?Dg .

The noncommutative gauge field Â is obtained from Dx =: x + Â,
such that ordinary gauge transform of A ⇒ NC gauge transform of Â.
→ explicit expression for the SW map for arbitrary Θ(x)
→ can be globalized (and extended to gerbes)

Jurco, PS, Wess (2000-2002)



Seiberg-Witten maps

Twisted Poisson structure, NC gerbes
Poisson structure twisted by closed 3-form H: [Θ,Θ]S =

∧3 Θ]H

For covering by contractible open patches labeled by α, β, γ, . . .:

H|α = dBα , (Bβ − Bα)|α∩β = Fαβ = dAαβ

Θ can be locally untwisted by Bα: Θα := Θ(1− ~BαΘ)−1.

quantization of Θ → nonassociative ?
quantization of Θα, Θβ → associative ?α, ?β related by Dαβ

for more details: Aschieri, Bakovic, Jurco, PS (2010)

SW maps for R-twisted Poisson structures
trivial gerbe → replace patch label α by the (constant) vector p̃:

Θ =

(
~R ijk pk δi j
−δi j 0

)
Θp̃ =

(
~R ijk p̃k δi j
−δi j 0

)
Bp̃ =

(
0 0
0 R ijk (pk − p̃k)

)
Θ: twisted Poisson Θp̃: Poisson H = dBp̃ = 1

2 R ijkdpidpjdpk



Seiberg-Witten maps

Gauge potential: A = AIdx I = ai (x , p)dx i + ãi (x , p)dpi

Maps between associative ?̃ and ?̃′ are generated by
Ap̃p̃′ = R ijkpi (p̃k − p̃′k)dpj with Fp̃p̃′ = R ijk(p̃k − p̃′k)dpidpj .

Special case p̃ = 0: canonical Moyal-Weyl star product ?0.

Generalization of SW maps for non-associative structures
A construction directly based on twisted Θ is spoiled by [Θ,Θ]S -terms.
These can be avoided in the present case by choosing ai (x , p) = 0!

I general coordinate transformations generated by
Θ(A,−) = ãi (x , p)∂i

I Nambu-Poisson maps: choose A = R(a2,−) for any 2-form a2;
→ higher “Nambu-Poisson” gauge theory.

I map from associative to nonassociative: Dp̃ generated by
Ap̃ = 1

2 R ijkpi p̃kdpj can be explicitly computed and satisfies

f ? g =
[
Dp̃f ?0 Dp̃g

]
p̃→p



Nambu-Poisson

Remarks on Nambu-Poisson structures

I The trivector Π = 1
6 R ijk∂i ∧ ∂j ∧ ∂k is an example of a

Nambu-Poisson tensor. More generally:

{f , h1, . . . , hp} = Πi j1...jp (x) ∂i f ∂j1 h1 · · · ∂jphp

{{f0, · · · , fp}, h1, · · · , hp} = {{f0, h1, · · · , hp}, f1, · · · , fp}+ . . .

. . .+ {f0, . . . , fp−1, {fp, h1, · · · , hp}}
I Our construction can be used to quantize these objects.

I Symmetry under Nambu-Poisson maps fixes the general form of a
DBI-type effective action for open membranes:

Sbosonic =

∫
det

1
3 [g ] det

1
6

[
g + (B + F )g̃−1(B + F )T

]
Jurco, PS (2012)



Conclusion

Summary

I Courant membrane sigma model with R-flux: Target space doubling
arises naturally in this model and geometrizes the flux: M is replaced
by T ∗M, which is interpreted as “phase space” (locally: Rn ⊕ Rn)

I Two string models descent from the membrane model: A closed
string model with non-geometric flux (originally studied by the
Munich groups) and an open string Poisson sigma model twisted by
a geometric 3-form R-flux.

I Perturbative quantization of the twisted Poisson sigma model leads
to a nonassociative dynamical star product. Its Jacobiator provides
the quantization of the 3-bracket.

I Generalized Seiberg-Witten maps include general coordinate
transformations (↔ “non-associative gravity), Nambu-Poisson maps
and even mappings from associative to non-associative algebras.

I The construction can be used to quantize Nambu-Poisson structures.
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