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String theory is often studied in regimes where a geometric description is available.

But string theory also admits non-geometric backgrounds as solutions.
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motivation :: h-flux background

Consider string theory compactified on a three-torus with H-flux:
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◾ The geometry is characterized by

◾ The H-flux is determined by
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motivation :: f-flux background

After a T-duality in the z-direction, one arrives at a twisted torus:

Scherk, Schwarz - 1979
Kachru, Schulz, Tripathy, Trivedi - 2002

ex = dx , ey = dy , ez = dz +Nxdy ,

�z

xy

= �N/2 ,

[e
x

, e
y

] = �N e
z

.

◾ The geometric flux follows from

◾ The geometry is characterized by
ds

2 = dx

2 + dy

2 + (dz +Nxdy)2 ,

B = 0 .



◾ The geometry is characterized by

motivation :: q-flux background

After a second T-duality in the y-direction, one arrives at a T-fold:

◾ The non-geometric Q-flux reads

Hellermann, McGreevy, Williams - 2002
Dabholkar, Hull - 2002

Hull - 2004

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

ds
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�
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�
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Byz = � N x

1 +N

2
x

2
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Q
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◾ The metric and B-field are well-defined locally, but not globally. 
Transition functions between local trivializations involve T-duality 
transformations, hence the name T-fold.



motivation :: r-flux background

After formally applying a third T-duality, one obtains an R-flux background:

◾ The metric and B-field are not even locally well-defined.

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

◾ The non-geometric R-flux is formally written as Rxyz = N .

◾ It has been observed that this background gives rise to a non-associative 
structure.

Bouwknegt, Hannabuss, Mathai - 2004
Shelton, Taylor, Wecht - 2005

Ellwood, Hashimoto - 2006
... - 2010 
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motivation :: generalized geometry I

An approach to study non-geometric fluxes is provided by generalized geometry.

◾ Consider a manifold M with generalized tangent bundle                     and 
sections             .

TM � T ⇤M
X + �

◾ On this bundle there is a natural O(d,d)-structure, and two abelian subgroups 
thereof are generated by

B-transform ::

-transform ::� X + ⇥ 7! (X + �]⇥) + ⇥

X + ⇥ 7! X + (⇥ � �X⇤)

Hitchin - 2002
Gualtieri - 2004

Graña, Minasian, Petrini, Waldram - 2008

◾ A generalized metric which encodes the metric G and a B-field reads

and a particular set of corresponding vielbeins reads                                         .(Ea, Ea) = (ea, ea � �eaB)

H =

 
G�BG�1B BG�1

�G�1B G�1

!
,



motivation :: generalized geometry II

Grange, Schäfer-Nameki - 2006
Graña, Minasian, Petrini, Waldram - 2008

Halmagyi - 2009

Using the Courant bracket, the algebra for the vielbeins can be determined:

The non-geometric fluxes are expressed in terms of a bi-vector    as�

Qa
bc = ⇥a�

bc + 2fam
[b�mc] , Rabc = 3

�
�[am⇥m�bc] + fmn

[a�bm�cn]
�
.

◾ But, after performing a    -transform on the vielbeins, one has�
⇥
Ẽa, Ẽb

⇤
= fabmẼm ,

⇥
Ẽa, Ẽb

⇤
= � fambẼm +Qa

bmẼm ,
⇥
Ẽa, Ẽb

⇤
= +Qm

abẼm +RabmẼm .

◾ For the basis              one finds(Ea, Ea) ⇥
Ea, Eb

⇤
= +fab

mEm �HabmEm ,
⇥
Ea, Eb

⇤
= � fam

bEm ,
⇥
Ea, Eb

⇤
= 0 .
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motivation :: double field theory

A further approach to study non-geometric fluxes is provided by double field theory.

Tseytlin - 1991
Siegel - 1993

Hull - 2004
Hull, Zwiebach - 2009 

Hohm, Hull, Zwiebach - 2010
Hohm, Kwak - 2010

Jeon, Lee, Park - 2010 & 2011
Hohm, Zwiebach - 2011

◾ This action is manifestly invariant under O(d,d)-transformations.

SDFT �
Z

dxdx̃e�2d

✓
1

8
HAB(�AHCD)(�BHCD) + . . .

◆
.

◾ The (NS-NS sector of the) action can then be expressed as

◾ Here, one first doubles the geometry
�a ! �A = (�a, �̃

a) .x

a ! x

A = (xa
, x̃a) ,

◾ Upon setting             , one recovers the usual action.@̃a = 0



motivation :: action for non-geometric fluxes

Andriot, Larfors, Lüst, Patalong - 2011
Andriot, Hohm, Larfors, Lüst, Patalong - 2012

To obtain an action for non-geometric fluxes, the following steps have been performed:

3. Set             and obtain an action for non-geometric fluxes.@̃a = 0

S̃
non-geometric

=

Z
dx

p
�|g̃|e�2�̃ L̃

�
g̃, �̃, ⇥̃

�
.

1. Consider the DFT action with generalized metric depending on G and B.

2. Perform an O(d,d)-transformation (T-duality transformation) and a field redefinition, 
to arrive at a DFT action depending on         .(g̃, �̃)

Alternatively, starting from the usual NS-NS Lagrangian a field redefinition has been 
employed to obtain a non-geometric action

G�1 = g̃�1 � �̃ g̃ �̃ , B�1 = �̃ � g̃�1�̃�1g̃�1 .



motivation :: plan of this talk

Blumenhagen, Deser, EP, Rennecke - 2012

As has been reviewed, for non-geometric fluxes a bi-vector    plays an important role�

Qa
bc = ⇥a�

bc , �abc = 3�[am⇥m�bc] .

1. Introduce a mathematical framework for describing �

→ Theory of Lie algebroids

2. Study diffeomorphisms and construct and invariant action
→ Differential geometry

3. Relation to string theory
→ Field redefinition à la Seiberg-Witten

An action incorporating the bi-vector    can be obtained as follows:�

4. Developments

→ Equations of motion and solutions
→ Extension to R-R and fermionic sectors
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lie algebroids

Hull - 2004
Halmagyi - 2008 & 2009

Berman, Perry - 2010
Blumenhagen, Deser, EP, Rennecke - 2012

A natural mathematical framework to describe a bi-vector    is given by Lie algebroids.�



lie algebroids :: definition

Let      be a manifold, and               a vector bundle withM E ! M

bracket
anchor map � : E ! TM .

[·, ·]E : E � E ⇥ E ,

homomorphism
Leibnitz rule
Jacobi identity

[s1, fs2]E = f [s1, s2]E + �(s1)(f)s2 ,

�([s1, s2]E) = [�(s1), �(s2)]L ,

[s1, [s2, s3]E ]E = [[s1, s2]E , s3]E + [s2, [s1, s3]E ]E .

Then                    is called a Lie algebroid, if (for                 and                    )(E, [·, ·]E , �) f � C1(M)si 2 �(E)

(E, [·, ·]E)

M M

⇢

(TM, [·, ·]L)



lie algebroids :: properties

Let      be a manifold, and               a vector bundle withM E ! M

bracket
anchor map � : E ! TM .

[·, ·]E : E � E ⇥ E ,

homomorphism
Leibnitz rule
Jacobi identity

[s1, fs2]E = f [s1, s2]E + �(s1)(f)s2 ,

�([s1, s2]E) = [�(s1), �(s2)]L ,

[s1, [s2, s3]E ]E = [[s1, s2]E , s3]E + [s2, [s1, s3]E ]E .

Then                    is called a Lie algebroid, if (for                 and                    )(E, [·, ·]E , �) f � C1(M)si 2 �(E)

There are two important properties of a Lie algebroid:

◾ The bracket on     can be extended to a Gerstenhaber algebra on              .E �(^?E)

◾ The space of dual sections                is a graded differential algebra with respect to�(^?E⇤)

(dE ⇥)(s0, . . . , sk) =
kX

i=0

(�1)i�(si) (⇥(s0, . . . , ŝi, . . . , sk))

+
X

i<j

(�1)i+j⇥ ([si, sj ]E , s0, . . . , ŝi, . . . , ŝj , . . . , sk) .



lie algebroids :: example I

Let      be a manifold, and               a vector bundle withM E ! M

bracket
anchor map � : E ! TM .

[·, ·]E : E � E ⇥ E ,

homomorphism
Leibnitz rule
Jacobi identity

[s1, fs2]E = f [s1, s2]E + �(s1)(f)s2 ,

�([s1, s2]E) = [�(s1), �(s2)]L ,

[s1, [s2, s3]E ]E = [[s1, s2]E , s3]E + [s2, [s1, s3]E ]E .

Then                    is called a Lie algebroid, if (for                 and                    )(E, [·, ·]E , �) f � C1(M)si 2 �(E)

The standard example for a Lie algebroid is                               :(TM, [·, ·]L, � = id)

◾ The bracket on        is the Lie bracket          between vector fields.[·, ·]LTM

◾ The extension to multi-vector fields gives the Schouten-Nijenhuis bracket            .[·, ·]SN

�(^?T ⇤M)◾ The differential on                    is the de Rham differential    .d



lie algebroids :: example II

Let      be a manifold, and               a vector bundle withM E ! M

bracket
anchor map � : E ! TM .

[·, ·]E : E � E ⇥ E ,

homomorphism
Leibnitz rule
Jacobi identity

[s1, fs2]E = f [s1, s2]E + �(s1)(f)s2 ,

�([s1, s2]E) = [�(s1), �(s2)]L ,

[s1, [s2, s3]E ]E = [[s1, s2]E , s3]E + [s2, [s1, s3]E ]E .

Then                    is called a Lie algebroid, if (for                 and                    )(E, [·, ·]E , �) f � C1(M)si 2 �(E)

For            a Poisson manifold, a Lie algebroid is given by                                  .(T ⇤M, [·, ·]K , ⇥ = ��)(M,�)

◾ The anchor is characterized by:                                            .⇥(ea) = ��(ea) = �abeb

◾ The bracket is the Koszul bracket: [⌅, ⇥]K = L�](⇤)⇥ � ⇤�](⇥) d⌅ ,

[ea, eb]K = (⇧c�
ab)ec .

◾ The differential on                  is:�(^?TM) d� = [�, ·]SN .



lie algebroids :: differential geometry I

Lsf := s(f) := ⇤(s)(f) ,

Ls0s = [s0, s]E ,

Ls0� = ⇥s0 � dE�+ dE � ⇥s0� .

A Lie derivative for a Lie algebroid can be defined as follows:
◾ action on functions                    :
◾ action on sections                  :
◾ action on sections                   : 

s 2 �(E)

� 2 �(E⇤)

f � C1(M)

A covariant derivative is a bilinear map                                          satisfyingr : �(E)⇥ �(E) ! �(E)

rfs1s2 = frs1s2 , rs1fs2 = �(s1)(f)s2 + frs1s2 .

Curvature and torsion tensors can be defined as

R(sa, sb)sc = rsarsbsc �rsbrsasc �r[sa,sb]E sc ,

T (sa, sb) = rsasb �rsbsa � [sa, sb]E .



lie algebroids :: differential geometry II

A metric on a Lie algebroid gives rise to a scalar product for sections in E

hsa, sbi = gab .

The analogue of the Levi-Civita connection is obtained by requiring
r̊s1s2 � r̊s2s1 = [s1, s2]E ,

�(s1)hs2, s3i = hr̊s1s2, s3i+ hs1, r̊s2s3i ,

◾ vanishing torsion
◾ metric compatibility

and it is characterized by the Koszul formula
2
⌦
r̊s1s2, s3

↵
= s1

�
hs2, s3i

�
+ s2

�
hs3, s1i

�
� s3

�
hs1, s2i

�

� hs1, [s2, s3]Ei+ hs2, [s3, s1]Ei+ hs3, [s1, s2]Ei .



lie algebroids :: applications I

◾ given by                                  ,(T ⇤M, [·, ·]K , ⇥ = ��)

Recall that there is a Lie algebroid structure on          incorporating a bi-vectorT ⇤M �

◾ defined in terms of the Koszul bracket,

�] : T ⇤M ! TM◾ and with anchor                             .

The Jacobi identity for                                  (T ⇤M, [·, ·]K , ⇥ = ��)

JacK(⇥,⌅, �) = d
�
�(⇥,⌅, �)

�
+ ⇤(�⇣���)d⇥ + ⇤(�⌘�⇣�)d⌅+ ⇤(���⌘�)d� ,

◾ is computed as (with                            )⇥,⇤, � 2 �(T ⇤M)

�abc = 3�[am⇥m�bc] .

⇥◾ where the defect      is given by the R-flux

◾ Thus, for non-vanishing R-flux this construction is only a quasi Lie algebroid ...



lie algebroids :: applications II

◾ the H-twisted Koszul bracket defined by

[⇤, �]HK = [⇤, �]K � ⇥�]⇥⇥�]⇤H .

◾ The corresponding Jacobi identity reads

JacHK(⇥,⌅, �) = d
�
R(⇥,⌅, �)

�
+ ⇤(�⇣��R)d⇥ + ⇤(�⌘�⇣R)d⌅+ ⇤(���⌘R)d� ,

Rabc = �abc � �am �bn �ck Hmnk .

◾ with the defect given by

To obtain a proper Lie algebroid for non-vanishing R-flux    , consider⇥

Therefore, a proper Lie algebroid                                       is obtained provided that(T ⇤M, [·, ·]HK ,��;R = 0)

�abc = �am �bn �ck Hmnk .



lie algebroids :: summary

One can develop a differential geometry calculus on          ,T ⇤M

◾ with Lie derivative, covariant derivative,

◾ curvature and torsion tensors,

◾ and Levi-Civita connection.

◾ is given by                                      ,

To summarize, a proper Lie algebroid structure on          incorporating a bi-vectorT ⇤M �

◾ provided that the R-flux         is related to the twist H as

(T ⇤M, [·, ·]HK ,��;R = 0)

⇥abc

�abc = �am �bn �ck Hmnk .

◾ The metric and partial derivative will be denoted by     and                    .ĝ Da = �ab@b
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diffeomorphisms :: definitions

◾ The Lie derivative based on the Lie bracket LX for                     .X 2 �(TM)

◾ The Lie derivative based on the Koszul bracket L̂⇠ for                     .� 2 �(T ⇤M)

Both can be used to describe and define (infinitesimal) diffeomorphisms ...

For the Lie algebroid on         , two different Lie derivates appear:T ⇤M



diffeomorphisms :: definitions

�

Definitions:

◾ A tensor
under   -diffeomorphisms as

is called a    -�T 2 �
�
(⌦rTM)⌦ (⌦sT ⇤M)

�
tensor, if it behaves as

�̂�T
a1...ar

b1...bs =
�
L̂�T

�a1...ar
b1...bs .

◾ An object
under diffeomorphisms as

T 2 �
�
(⌦rTM)⌦ (⌦sT ⇤M)

�
is called a tensor, if it behaves 

�X T a1...ar
b1...bs = (LX T )a1...ar

b1...bs .

◾ The Lie derivative based on the Lie bracket LX for                     .X 2 �(TM)

◾ The Lie derivative based on the Koszul bracket L̂⇠ for                     .� 2 �(T ⇤M)

Both can be used to describe and define (infinitesimal) diffeomorphisms ...

For the Lie algebroid on         , two different Lie derivates appear:T ⇤M



diffeomorphisms :: tensors

For usual diffeomorphisms,

�Xf = X(f) = LXf �Xdf = LXdf .

�X ĝ = LX ĝ .

⇥X� = LX� �X� = LX� .

◾ the transformation behavior of a scalar f implies

◾ The metric     is a tensor, that isĝ

�abc = 3�[a|m@m�|bc]◾ If the bi-vector is a tensor, it implies for the R-flux                                    that

For   -diffeomorphisms,�

◾ Requiring that the partial derivative of a scalar is a   -tensor implies�

◾ a scalar f transforms as                                 , where                    .�̂�f = L̂�f = ⇥aD
af Da = �ab⇥b

⇥̂�
�
Daf

�
=

�
L̂�Df

�a
+

�
⇥̂� �

ab ��abm⇤m
�
⌅bf

!
=

�
L̂�Df

�a

�̂� �
ab = �abm ⇠m = L̂� � + �am�bn

�
@m⇠n � @n⇠m

�

�̂⇠� = L̂⇠� .



diffeomorphisms :: algebra of transformations

⇥
�̂⇥1 , �̂⇥2

⇤
⇥ = �̂[⇥1,⇥2]K⇥ + ⇤(��1 ��2�)d⇥ � d

�
�(⌅1, ⌅2, ⇥)

�
,

where the defect is given by the R-flux     .⇥

The algebra of infinitesimal   -transformations does not close (with                            )� �, ⇥1,2 2 �(T ⇤M)



diffeomorphisms :: algebra of transformations

However, the combined algebra of standard and   -diffeomorphisms does close�
⇥
�X1 , �X2

⇤
= �[X1,X2]L ,

⇥
�̂⇥1 , �X1

⇤
= �(L̂�1X1)

,
⇥
�̂⇥1 , �̂⇥2

⇤
= �̂[⇥1,⇥2]K + �(��1 ��2�) .

⇥
�̂⇥1 , �̂⇥2

⇤
⇥ = �̂[⇥1,⇥2]K⇥ + ⇤(��1 ��2�)d⇥ � d

�
�(⌅1, ⌅2, ⇥)

�
,

where the defect is given by the R-flux     .⇥

The algebra of infinitesimal   -transformations does not close (with                            )� �, ⇥1,2 2 �(T ⇤M)



diffeomorphisms :: summary

Since two different Lie derivates appear for the Lie algebroid on          ,T ⇤M

◾ one can describe infinitesimal diffeomorphisms by                   ,�X = LX

◾ and a new type of    -diffeomorphisms by                             .� �̂⇠ = L̂⇠

⇥̂� ĝ
ab = (L̂� ĝ)

ab , ⇥̂� �
ab = (L̂��)

ab + �am�bn
�
⌅m⇤n � ⌅n⇤m

�
.

The infinitesimal   -transformations of the metric and bi-vector read�

�-tensor
tensor

metric ĝ bi-vector� R-flux ⇥

X
X

X X
X

X
X

derivative Df

The behavior under standard and   -diffeomorphisms can be summarized as�
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bi-invariant geometry :: technical remarks

�̂�[⇥,⇤]
H
K = L̂�[⇥,⇤]

H
K .

Due to the anomalous transformation behavior of    , the H-twisted Koszul bracket 
of   -tensors is a   -tensor

�
��

Thus, objects construct via this bracket are   -tensors.�

For a basis                          , the H-twisted Koszul bracket evaluates to{ea} � �(T ⇤M)

⇥
ea, eb

⇤H
K

=
�
⇥c�

ab � �am �bn Hmnc

�
ec = Qc

ab ec .



bi-invariant geometry :: differential geometry I

(T ⇤M, [·, ·]HK ,��;R = 0)For the Lie algebroid                                       ,
◾ the Leibnitz rule of the covariant derivative reads (                       ,                   )⇥, � 2 �(T ⇤M) f � C1(M)

r̂�(f ⇥) = f r̂�⇥ +
�
(�⇥⇤)f

�
⇥

= f r̂�⇥ + ⇤m(Dmf)⇥ .

r̂a�b = Da�b + �̂b
am �m ,

r̂aXb = DaXb � �̂m
ab Xm .

◾ which for the components of a one-form and a vector field implies

◾ Connection coefficients for a basis                          are defined as{ea} � �(T ⇤M)

r̂eae
b ⌘ r̂a eb = �̂c

ab ec ,

In order for      to be a tensor and a    -tensor,          has to transform anomalouslyr̂ � �̂c
ab

�
�X � LX

�
�̂c

ab = �Da(⇤cXb) ,
�
�̂� � L̂�

�
�̂c

ab = +Da(Db⇥c � ⇥m Qc
mb) .



bi-invariant geometry :: differential geometry II

The torsion operator for the present Lie algebroid

◾ takes the form T̂ (⇥, �) = r̂⇥ � � r̂� ⇥ � [⇥, �]HK ,

◾ which in components reads T̂c
ab = �ec T̂ (e

a, eb) = �̂c
ab � �̂c

ba �Qc
ab .

◾ It is a tensor with respect to standard and   -diffeomorphisms.�

The Levi-Civita connection is obtained by requiring

◾ metric compatibility (�]⇤) ĝ(⇥,⌅) = ĝ
�
r̂⇠⇥,⌅

�
+ ĝ

�
⇥, r̂⇠⌅

�
,

◾ vanishing torsion Qc
ab = �̂c

ab � �̂c
ba .

◾ Employing the Koszul formula, the connection coefficients are computed as

�̂c
ab =

1

2
ĝcm

�
Daĝbm +Dbĝam �Dmĝab

�
� ĝcm ĝ(a|n Qn

|b)m +
1

2
Qc

ab .

The connection coefficients have the correct anomalous transformation behavior. 



bi-invariant geometry :: differential geometry III

The curvature tensor satisfies (for the Levi-Civita connection)

R̂abcd = �R̂bacd = �R̂abdc = R̂cdab ,
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ab .
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�|ĝ| L̂
�
= ⌅m

�p
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metric ĝ bi-vector� R-flux ⇥

X
X

X X
X

X
X

derivative Df Ricci scalar R̂

X
X

The transformation behavior of quantities discussed above can be summarized as:

The following Lagrangian then behaves as a scalar under standard &   -diffeomorphisms�

L̂ = e�2�

✓
R̂� 1

12
�abc �abc + 4ĝab D
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bi-invariant geometry :: invariant action II

Combining these findings, one arrives at the bi-invariant action 
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differential geometry :: summary

A bi-invariant action has been constructed
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◾ characterized by a Levi-Civita connection

�̂c
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1

2
ĝcm

�
Daĝbm +Dbĝam �Dmĝab

�
� ĝcm ĝ(a|n Qn

|b)m +
1

2
Qc

ab ,

◾ as well as a curvature tensor have been determined
R̂a

bcd = 2
�
D[c�̂a

d]b + �̂a
[c|m �̂m

|d]b�� �̂a
mb Qm

cd .

For the Lie algebroid                                      , a corresponding differential geometry(T ⇤M, [·, ·]HK ,��;R = 0)
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string theory :: notation

The following notation will be employed from now on:

◾ non-geometric frame (ĝ, �̂) .
◾ standard geometric frame (G,B),



string theory :: field redefinition

To connect to string theory, consider a Seiberg-Witten field redefinition

�̂ab = (B�1)ab .ĝab = �̂am �̂bn Gmn ,
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To connect to string theory, consider a Seiberg-Witten field redefinition

�̂ab = (B�1)ab .ĝab = �̂am �̂bn Gmn ,

This relation between the frames            and           then implies that(ĝ, �̂)(G,B)

◾ The   -transformations correspond to gauge transformations.�

◾ the metric and bi-vector are tensors.
◾ The field identification                                         for a proper Lie algebroid is 

automatically satisfied.
�̂abc = �̂am�̂bn�̂ck Hmnk



string theory :: proper lie algebroid

Therefore, for the Lie algebroid                                       the Jacobi identity is satisfied.(T ⇤M, [·, ·]HK ,��;R = 0)

Given the field redefinition mentioned above, the H- and R-flux can be related as

Habc = 3 ⇥[aBbc]

= �3B[b|m (⇥|a|�̂
mn)Bn|c]

= 3B[a|k| Bb|m| Bc]n D
k�̂mn

= Bak Bbm Bcn �̂
mnk ,

which then implies �̂abc = �̂am�̂bn�̂ck Hmnk .



string theory :: gauge transformations

The    -field behaves under gauge transformations in the following wayB

�gauge� Bab = ⇤a ⇥b � ⇤b ⇥a .

⇥gauge� ĝab = 2 ĝ(a|m�̂|b)n�⌅m⇤n � ⌅n⇤m
�
,
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�
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�
.

Using the field redefinitions given above, this implies
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⇥
(L̂⇥�̂)

ab + �̂am�̂bn
�
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�⇤
.

With     the ordinary Lie derivative and     the one based on the Koszul bracket, one hasL L̂

⇥̂� ĝ
ab = (L̂� ĝ)

ab ,

⇥̂� �̂
ab = (L̂��̂)

ab + �̂am�̂bn
�
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�
.

This agrees with the previously introduced   -diffeomorphisms�
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string theory :: ns-ns sector

Employing the field redefinitions
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one arrives at the gravity part of the string theory action

The action in the non-geometric frame reads

Habc = �̂am �̂bn �̂cp �̂
mnp ,

⇤a⇥ = �̂amDm⇥ ,

Rd
cab = ��̂dq �̂cp �̂am �̂bn R̂q

pmn ,
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string theory :: higher-order corrections

These can be expressed in terms of the building blocks          ,          and        .@a�HabcRabcd

The translations of such blocks to the non-geometric frame is known, thus

Ŝ(1) =
1

2⇤2

�0

4

Z
d26x

p
�|ĝ|

��⇥̂�1
�� e�2�

⇣
R̂abcd R̂abcd � 1

2 R̂
abcd �̂abm�̂cd

m

+ 1
24 �̂abc �̂

a
mn �̂

bm
p �̂

cnp � 1
8 (�̂amn�̂b

mn)(�̂a
pq�̂

bpq)
⌘
.

The string theory action in the           -frame receives higher-order    -corrections.(G,B) ↵0

Metsaev, Tseytlin - 1987
Hull, Townsend - 1988



string theory :: r-r sector I

Note the following:

Ca1...an1. If               is invariant under B-field gauge transformations in the (G,B)-frame, then

Ĉa1...an = �̂a1b1 . . . �̂anbnCb1...bn

behaves as a   -tensor.�

2. If                is a   -tensor, then alsoĈa1...an �

F̂ a1...an+1 = r̂[a1Ĉa2...an+1]

behaves as a   -tensor.�

��Ĉ
a1...an = r̂[a1�a2...an] .

3. One can verify that                 is invariant under F̂ a1...an+1

Therefore, the              can be considered as the analogues of the R-R gauge potentials.Ĉa1...an



string theory :: r-r sector II

To obtain an action for the gauge potentials      and      ,Ĉ1 Ĉ3

◾ which are invariant under the gauge transformations
��(0)

Ĉa = r̂a⇥(0) , ��(2)
Ĉa1a2a3 = r̂[a1⇥a2a3]

(2) ,

��(0)
Ĉa1a2a3 = �⇥(0) �̂

a1a2a3 .

◾ define the generalized field strengths
F̂2 = F̂2 , F̂4 = F̂4 � �̂ ⇥ Ĉ1 ,

ŜR-R
IIA =

1

2⇥2
10

Z
d10x

p
�|ĝ|

���̂�1
��
⇣
� 1

2 |F̂2|2 � 1
2 |F̂4|2

⌘
,

◾ The action related to type IIA string theory via the above field redefinition reads

◾ which is invariant under gauge transformations and (   -)diffeomorphisms.�

Similarly, the Chern-Simons action is found as

ŜCS
IIA =

1

4⇤2
10

1

3!4!3!

Z
d10x

���̂�1
�� ⇥b1...b10 �̂b1b2b3 F̂ b4b5b6b7

(4) Ĉb8b9b10
(3) .



string theory :: fermionic sector I

The Lagrangian for the dilatino in the standard frame reads
L⌅
IIA = ⇥��e�

a
�
⌅a � i

4 ⇤a ⇥⇤ �
⇥⇤

�
⇥ .

The notation is as follows:
� = �̂ ,

e�
a e⇥

bGab = ��⇥ , ��⇥ = ê�a ê
⇥
b ĝ

ab ,

ec
� e⇥

b �c
ab + ec

� ⇥ae⇥
c = �a

�
⇥ , �̂a

�
⇥ = ê�

b ê⇥c �̂b
ac + ê�

bDaê⇥b .

The Lagrangian in the non-geometric frame then becomes

L̂⌅
IIA = ⇥̂��ê

�
a

�
Da � i

4 ⇤̂
a
⇥⇤�

⇥⇤
�
⇥̂ .



string theory :: fermionic sector II

The Lagrangian for the gravitino in the standard frame reads
L�
IIA = �a�

�⇥⇤e�
ae⇥

be⇤
c
�
⇥b � i

4 ⇥b ⌅⇧ �
⌅⇧
�
�c .

With the field redefinition
�̂a = �̂ab �̂b ,

the Lagrangian in the non-geometric frame becomes

L̂�
IIA = �̂a��⇥⇤ ê

�
aê

⇥
bê

⇤
c

⇣
⇥̂b � i

4 ⇥̂
b
⌅⇧ �

⌅⇧
⌘
�̂c .

Note that the appearance of the covariant derivative is crucial.



string theory :: summary & remark

Using the field redefinition, a relation between actions has been established
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Employing the same principle, actions have been derived
◾ for higher-order   -corrections,
◾ for the remaining bosonic terms in the type IIA action, and
◾ for the fermionic terms in the type IIA theory.

↵0
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Contact with the action in the non-geometric         -frame obtained via DFT is made via(g̃, �̃)

ĝ = g̃ � g̃ �̃�1 g̃ �̃�1 g̃ , �̂ = �̃ � g̃ �̃�1g̃ .
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solutions :: equations of motion

The equations of motion determined from the non-geometric action
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can be expressed as follows

0 = �1

2
ĝab r̂ar̂b�+ ĝab r̂a�r̂b�� 1

24
�̂abc �̂abc ,

0 = R̂ab + 2r̂ar̂b�� 1

4
�̂amn�̂b

mn ,

0 =
1

2
r̂m�̂mab � (r̂m�)�̂mab .

These field equations are of the same form as the ones in the geometric frame.



solutions :: an approximate solution

Consider       with a metric and bi-vector field given byR4

�̂ =

0

BB@

0 +⇥�1 (1 + |x4|) 0 0
�⇥�1 (1 + |x4|) 0 0 0

0 0 0 +sign(x4)⇥⇤
0 0 �sign(x4)⇥⇤ 0

1

CCA .ĝab = �ab ,

The resulting non-geometric quantities read

Q̂1
31 = �Q̂1

13 = Q̂2
32 = �Q̂2

23 =
⇥�

1 + |x4|
,

�̂123 = � .R̂11 = R̂22 =
3

4
R̂33 = �3

(⇥�)2

(1 + |x4|)2
,

Q4
12 = �Q4

21 =
sign(x4)

�
,

The equations of motion are satisfied (up to first order in the flux) in the limit           , i.e.✏ ! 0

R̂ab �!0����⇥ 0 , Q̂c
ab �!0����⇥ 0 , �̂123 = � .



solutions :: calabi-yau manifolds

In the geometric frame, (compact) Calabi-Yau manifolds can be characterized by

For                and                 , these are solutions to the equations of motion.Habc = 0 � = const.

d� = 0 ,a Kähler form satisfying
and by

� =
i

2
Gab dz

a ^ dzb

Rab = 0 .

After the field redefinition, one obtains a non-geometric Calabi-Yau manifold given by

dH� W = 0 ,

For the corresponding                and                 , this is a non-geometric solution.�̂abc = 0 � = const.

a two-vector satisfying
and by

W =
i

2
ĝab̄ �za ^ �z̄b

R̂ab = 0 .
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conclusions :: part I

Qa
bc = ⇥a�

bc , �abc = 3�[am⇥m�bc] .

1. As reviewed, non-geometric fluxes are expressed in terms of a bi-vector    as�

2. A mathematical framework to describe a bi-vector is 
◾ the theory of Lie algebroids (generalization of the Lie bracket on       ).
◾ A construction suitable for non-vanishing R-flux is                                      .

TM

(T ⇤M, [·, ·]HK ,��;R = 0)

3. The differential geometry calculus for Lie algebroids was used to construct an action

which is manifestly bi-invariant under standard and   -diffeomorphisms.�
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⌘
,



conclusions :: part II

5. Using the field redefinitions, 
◾ actions for the non-geometric R-R and fermionic sectors have been derived.
◾ The equations of motion and some solutions have been discussed.

4. Motivated by the Seiberg-Witten map, a field redefinition
◾ relating string theory and the above action has been obtained

�̂ab = (B�1)ab ,ĝab = �̂am �̂bn Gmn ,

◾ which fits naturally into the Lie-algebroid construction.


