Double Field Theory

CMH \& Barton Zwiebach
arXiv:0904.4664, 0908.1792

CMH \& BZ \& Olaf Hohm arXiv:I O03.5027, I006.4664

Double Field Theory

- From sector of String Field Theory, features stringy physics, including T-duality
- Strings see a doubled space-time
- Doubled space fully dynamic
- Interesting geometry
- Relations to generalised geometry which doubles tangent space, but not space itself.

T-duality

- Takes S^{\prime} of radius R to S^{1} of radius I/R
- Exchanges momentum p and winding w
- Exchanges S^{\prime} coordinate X and dual S^{\prime} coordinate \tilde{X}
- Acts on "doubled circle" with coordinates (X, \tilde{X})
- On d torus,T-duality group $O(d, d ; \mathbb{Z})$
- Automorphisms of conformal field theory

T-Duality

- Space has d-torus fibration
- G,B on fibres

$G(Y), B(Y)$

- T-Duality O(d,d;Z), mixes G,B
- Mixes Momentum and Winding
- Changes geometry and topology

$$
\begin{gathered}
E \rightarrow(a E+b)(c E+d)^{-1} \\
h=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in O(d, d ; Z) \quad E_{i j}=G_{i j}+B_{i j}
\end{gathered}
$$

On circle, radius R :

$$
O(1,1 ; \mathbb{Z})=\mathbb{Z}_{2}: R \mapsto \frac{1}{R}
$$

Strings on T^{d}

$X=X_{L}(\sigma+\tau)+X_{R}(\sigma-\tau), \quad \tilde{X}=X_{L}-X_{R}$
X conjugate to momentum, \tilde{X} to winding no.

$$
d X=* d \tilde{X} \quad \partial_{a} X=\epsilon_{a b} \partial^{b} \tilde{X}
$$

Strings on T^{d}

$X=X_{L}(\sigma+\tau)+X_{R}(\sigma-\tau), \quad \tilde{X}=X_{L}-X_{R}$
X conjugate to momentum, \tilde{X} to winding no.

$$
d X=* d \tilde{X} \quad \partial_{a} X=\epsilon_{a b} \partial^{b} \tilde{X}
$$

Need "auxiliary" \tilde{X} for interacting theory i) Vertex operators $e^{i k_{L} \cdot X_{L}}, \quad e^{i k_{R} \cdot X_{R}}$
ii) String field Kugo \& Zwiebach $\Phi[x, \tilde{x}, a, \tilde{a}]$

Strings on T^{d}

$$
X=X_{L}(\sigma+\tau)+X_{R}(\sigma-\tau), \quad \tilde{X}=X_{L}-X_{R}
$$

X conjugate to momentum, \tilde{X} to winding no.

$$
d X=* d \tilde{X} \quad \partial_{a} X=\epsilon_{a b} \partial^{b} \tilde{X}
$$

Need "auxiliary" \tilde{X} for interacting theory i) Vertex operators $e^{i k_{L} \cdot X_{L}}, \quad e^{i k_{R} \cdot X_{R}}$
ii) String field Kugo \& Zwiebach $\Phi[x, \tilde{x}, a, \tilde{a}]$

Doubled Torus 2d coordinates
Transform linearly under $O(d, d ; \mathbb{Z})$

$$
X \equiv\binom{\tilde{x}_{i}}{x^{i}}
$$

Doubled sigma model CMH 0406I02

Strings on a Torus

- States: momentum p, winding w
- String: Infinite set of fields $\psi(p, w)$
- Fourier transform to doubled space: $\psi(x, \tilde{x})$
- "Double Field Theory" from closed string field theory. Some non-locality in doubled space
- Subsector? e.g. $g_{i j}(x, \tilde{x}), b_{i j}(x, \tilde{x}), \phi(x, \tilde{x})$

Double Field Theory

- Double field theory on doubled torus
- General solution of string theory: involves doubled fields $\psi(x, \tilde{x})$
- DFT needed for non-geometric backgrounds
- Real dependence on full doubled geometry, dual dimensions not auxiliary or gauge artifact. Double geom. physical and dynamical
- Novel symmetry, reduces to diffeos + B-field trans. in any half-dimensional subtorus
- Backgrounds depending on $\left\{x^{a}\right\}$ seen by particles, on $\left\{\tilde{x}_{a}\right\}$ seen by winding modes.
- Captures exotic and complicated structure of interacting string: Non-polynomial, algebraic structure homotopy Lie algebra, cocycles.
- T-duality symmetry manifest
- Formalism for T-folds etc
- Generalised T-duality: no isometries needed

> Earlier work on double fields: Siegel, Tseytlin

Strings on Torus

$$
D=n+d
$$

Target space
Coordinates
Momenta
Constant metric and B-field

$$
\begin{aligned}
& \mathbb{R}^{n-1,1} \times T^{d} \\
& x^{i}=\left(x^{\mu}, x^{a}\right) \\
& p_{i}=\left(p_{\mu}, p_{a}\right) \\
& w^{i}=\left(w^{\mu}, w^{a}\right) \\
& \tilde{x}_{i}=\left(\tilde{x}_{\mu}, \tilde{x}_{a}\right) \\
& E_{i j}=G_{i j}+B_{i j}
\end{aligned}
$$

Compact dimensions
p_{a}, w^{a} discrete, in Narain lattice, x^{a}, \tilde{x}_{a} periodic
Non-compact dimensions x^{μ}, p_{μ} continuous
Usually take $w^{\mu}=0 \quad$ so $\frac{\partial}{\partial \tilde{x}_{\mu}}=0, \quad$ fields $\psi\left(x^{\mu}, x^{a}, \tilde{x}_{a}\right)$

T-Duality

- Interchanges momentum and winding
- Equivalence of string theories on dual backgrounds with very different geometries
- String field theory symmetry, provided fields depend on both $x, \tilde{x} \quad$ Kugo, Zwiebach
- For fields $\psi\left(x^{\mu}\right)$ not $\psi\left(x^{\mu}, x^{a}, \tilde{x}_{a}\right) \quad$ Buscher
- Generalise to fields $\psi\left(x^{\mu}, x^{a}, \tilde{x}_{a}\right)$

Generalised T-duality Dabholkar \& CMH

String Field Theory on Minkowski Space

String field

$$
\begin{gathered}
\Phi[X(\sigma), c(\sigma)] \\
X^{i}(\sigma) \rightarrow x^{i}, \text { oscillators }
\end{gathered}
$$

Expand to get infinite set of fields

$$
g_{i j}(x), b_{i j}(x), \phi(x), \ldots, C_{i j k \ldots l}(x), \ldots
$$

Integrating out massive fields gives field theory for

$$
g_{i j}(x), b_{i j}(x), \phi(x)
$$

String Field Theory on a torus

String field

$$
\Phi[X(\sigma), c(\sigma)]
$$

$$
X^{i}(\sigma) \rightarrow x^{i}, \tilde{x}_{i}, \text { oscillators }
$$

Expand to get infinite set of double fields
$g_{i j}(x, \tilde{x}), b_{i j}(x, \tilde{x}), \phi(x, \tilde{x}), \ldots, C_{i j k \ldots l}(x, \tilde{x}), \ldots$
Seek double field theory for

$$
g_{i j}(x, \tilde{x}), b_{i j}(x, \tilde{x}), \phi(x, \tilde{x})
$$

Free Field Equations ($\mathrm{B}=0$)

$$
L_{0}+\bar{L}_{0}=2
$$

$$
p^{2}+w^{2}=N+\bar{N}-2
$$

$$
L_{0}-\bar{L}_{0}=0
$$

$$
p_{i} w^{i}=N-\bar{N}
$$

Free Field Equations ($\mathrm{B}=0$)

$$
L_{0}+\bar{L}_{0}=2
$$

$$
p^{2}+w^{2}=N+\bar{N}-2
$$

Treat as field equation, kinetic operator in doubled space

$$
G^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+G_{i j} \frac{\partial^{2}}{\partial \tilde{x}_{i} \partial \tilde{x}_{j}}
$$

$$
L_{0}-\bar{L}_{0}=0
$$

$$
p_{i} w^{i}=N-\bar{N}
$$

Treat as constraint on double fields

$$
\Delta \equiv \frac{\partial^{2}}{\partial x^{i} \partial \tilde{x}_{i}} \quad(\Delta-\mu) \psi=0
$$

Free Field Equations ($\mathrm{B}=0$)

$$
L_{0}+\bar{L}_{0}=2
$$

$$
p^{2}+w^{2}=N+\bar{N}-2
$$

Treat as field equation, kinetic operator in doubled space

$$
L_{0}-\bar{L}_{0}=0 \begin{gathered}
G^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+G_{i j} \frac{\partial^{2}}{\partial \tilde{x}_{i} \partial \tilde{x}_{j}} \\
p_{i} w^{i}=N-\bar{N} \quad d s^{2}=G_{i j} d x^{i} d x^{j}+G^{i j} d \tilde{x}_{i} d \tilde{x}_{j}
\end{gathered}
$$

Treat as constraint on double fields

$$
\Delta \equiv \frac{\partial^{2}}{\partial x^{i} \partial \tilde{x}_{i}} \quad(\Delta-\mu) \psi=0
$$

Laplacian for metric

$$
d s^{2}=d x^{i} d \tilde{x}_{i}
$$

$$
g_{i j}(x, \tilde{x}), b_{i j}(x, \tilde{x}), \phi(x, \tilde{x})
$$

$$
\begin{gathered}
N=\bar{N}=1 \\
p^{2}+w^{2}=0 \\
p \cdot w=0
\end{gathered}
$$

"Double Massless"

Constrained fields $\quad \psi\left(x^{\mu}, x^{a}, \tilde{x}_{a}\right)$

$$
(\Delta-\mu) \psi=0
$$

Momentum space $\quad \psi\left(p_{\mu}, p_{a}, w^{a}\right) \quad \Delta=p_{a} w^{a}$

Momentum space: Dimension n+2d
Cone: $p_{a} w^{a}=0$ or hyperboloid: $p_{a} w^{a}=\mu$ dimension $\mathrm{n}+2 \mathrm{~d}$ - I

DFT: fields on cone or hyperboloid, with discrete p,w Problem: naive product of fields on cone do not lie on cone.Vertices need projectors

Restricted fields: Fields that depend on d of 2d torus momenta, e.g. $\psi\left(p_{\mu}, p_{a}\right)$ or $\psi\left(p_{\mu}, w^{a}\right)$
Simple subsector, no projectors needed, no cocycles.

Torus Backgrounds

$$
G_{i j}=\left(\begin{array}{cc}
\eta_{\mu \nu} & 0 \\
0 & G_{a b}
\end{array}\right), \quad B_{i j}=\left(\begin{array}{cc}
0 & 0 \\
0 & B_{a b}
\end{array}\right) \quad E_{i j} \equiv G_{i j}+B_{i j}
$$

Fluctuations $\quad e_{i j}=h_{i j}+b_{i j}$
Take $\quad B_{i j}=0$

$$
\tilde{\partial}_{i} \equiv G_{i k} \frac{\partial}{\partial \tilde{x}_{k}}
$$

Torus Backgrounds

$$
G_{i j}=\left(\begin{array}{cc}
\eta_{\mu \nu} & 0 \\
0 & G_{a b}
\end{array}\right), \quad B_{i j}=\left(\begin{array}{cc}
0 & 0 \\
0 & B_{a b}
\end{array}\right) \quad E_{i j} \equiv G_{i j}+B_{i j}
$$

Fluctuations $\quad e_{i j}=h_{i j}+b_{i j}$

$$
\text { Take } \quad B_{i j}=0
$$

$$
\tilde{\partial}_{i} \equiv G_{i k} \frac{\partial}{\partial \tilde{x}_{k}}
$$

Usual action $\quad \int d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right]$
Quadratic part
$\int d x L[h, b, d ; \partial]$
$e^{-2 d}=e^{-2 \phi} \sqrt{-g}$
(d invariant under usual T-duality)

Double Field Theory Action

$$
\begin{aligned}
S^{(2)} & =\int[d x d \tilde{x}][L[h, b, d ; \partial]+L[-h,-b, d ; \tilde{\partial}] \\
& \left.+\left(\partial_{k} h^{i k}\right)\left(\tilde{\partial}^{j} b_{i j}\right)+\left(\tilde{\partial}^{k} h_{i k}\right)\left(\partial_{j} b^{i j}\right)-4 d \partial^{i} \tilde{\partial}^{j} b_{i j}\right]
\end{aligned}
$$

Action + dual action + strange mixing terms

Double Field Theory Action

$$
\begin{aligned}
S^{(2)} & =\int[d x d \tilde{x}][L[h, b, d ; \partial]+L[-h,-b, d ; \tilde{\partial}] \\
& \left.+\left(\partial_{k} h^{i k}\right)\left(\tilde{\partial}^{j} b_{i j}\right)+\left(\tilde{\partial}^{k} h_{i k}\right)\left(\partial_{j} b^{i j}\right)-4 d \partial^{i} \tilde{\partial}^{j} b_{i j}\right]
\end{aligned}
$$

Action + dual action + strange mixing terms

$$
\begin{aligned}
\delta h_{i j} & =\partial_{i} \epsilon_{j}+\partial_{j} \epsilon_{i}+\tilde{\partial}_{i} \tilde{\epsilon}_{j}+\tilde{\partial}_{j} \tilde{\epsilon}_{i} \\
\delta b_{i j} & =-\left(\tilde{\partial}_{i} \epsilon_{j}-\tilde{\partial}_{j} \epsilon_{i}\right)-\left(\partial_{i} \tilde{\epsilon}_{j}-\partial_{j} \tilde{\epsilon}_{i}\right) \\
\delta d & =-\partial \cdot \epsilon+\tilde{\partial} \cdot \tilde{\epsilon} . \quad \text { Invariance needs constraint }
\end{aligned}
$$

Diffeos and B-field transformations mixed. Invariant cubic action found for full DFT of (h,b,d)

T-Duality Transformations of Background

$$
\begin{gathered}
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in O(d, d ; \mathbb{Z}) \quad \text { T-duality } \\
E^{\prime}=(a E+b)(c E+d)^{-1} \\
X \equiv\binom{\tilde{x}_{i}}{x^{i}} \quad \text { transforms as a vector } \\
X^{\prime}=\binom{\tilde{x}^{\prime}}{x^{\prime}}=g X=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\tilde{x}}{x}
\end{gathered}
$$

T-Duality is a Symmetry of the Action

Fields

$$
e_{i j}(x, \tilde{x}), d(x, \tilde{x})
$$

Background $E_{i j}$

$$
\begin{aligned}
& E^{\prime}=(a E+b)(c E+d)^{-1} \\
& X^{\prime}=\binom{\tilde{x}^{\prime}}{x^{\prime}}=g X=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\tilde{x}}{x}
\end{aligned}
$$

Action invariant if:

$$
\begin{aligned}
e_{i j}(X) & =M_{i}^{k} \bar{M}_{j}^{l} e_{k l}^{\prime}\left(X^{\prime}\right) & & M \equiv d^{t}-E c^{t} \\
d(X) & =d^{\prime}\left(X^{\prime}\right) & & \bar{M} \equiv d^{t}+E^{t} c^{t}
\end{aligned}
$$

With general momentum and winding dependence!

Projectors and Cocycles

Naive product of constrained fields doesn't satisfy constraint

$$
\begin{aligned}
L_{0}^{-} \Psi_{1} & =0, L_{0}^{-} \Psi_{2}=0 & \text { but } & L_{0}^{-}\left(\Psi_{1} \Psi_{2}\right) \neq 0 \\
\Delta A & =0, \Delta B=0 & \text { but } & \Delta(A B) \neq 0
\end{aligned}
$$

String product has explicit projection
Leads to a symmetry that is not a Lie algebra, but is a homotopy lie algebra.

Projectors and Cocycles

Naive product of constrained fields doesn't satisfy constraint

$$
\begin{array}{rlrl}
L_{0}^{-} \Psi_{1} & =0, L_{0}^{-} \Psi_{2}=0 & \text { but } & L_{0}^{-}\left(\Psi_{1} \Psi_{2}\right) \neq 0 \\
\Delta A & =0, \Delta B=0 \quad \text { but } \quad \Delta(A B) \neq 0
\end{array}
$$

String product has explicit projection
Leads to a symmetry that is not a Lie algebra, but is a homotopy lie algebra.

Double field theory requires projections.
SFT has non-local cocycles in vertices, DFT should too Cocycles and projectors not needed in cubic action

Fields on Spacetime M
Restricted Fields on N, T-dual to $\mathrm{M} \quad \psi\left(x^{\prime}\right)$
M,N null wrt $\mathbf{O}(\mathbf{D}, \mathrm{D})$ metric $\quad d s^{2}=d x^{i} d \tilde{x}_{i}$
Subsector with fields and parameters all restricted to M or N

- Constraint satisfied on all fields and products of fields
- No projectors or cocycles
- T-duality covariant: independent of choice of N
- Can find full non-linear form of gauge transformations
- Full gauge algebra, full non-linear action

Restricted DFT

Double fields restricted to null D-dimensional subspace N T-duality "rotates" N to N '

Background independent fields: g,b,d:

$$
\mathcal{E} \equiv E+\left(1-\frac{1}{2} e\right)^{-1} e \quad \mathcal{E}_{i j}=g_{i j}+b_{i j}
$$

O(D,D) Covariant Notation

$$
\begin{array}{ll}
X^{M} \equiv\binom{\tilde{x}_{i}}{x^{i}} & \partial_{M} \equiv\binom{\partial^{i}}{\partial_{i}} \\
\eta_{M N}=\left(\begin{array}{cc}
0 & I \\
I & 0
\end{array}\right) & M=1, \ldots, 2 D
\end{array}
$$

Generalised T-duality transformations:

$$
X^{\prime M} \equiv\binom{\tilde{x}_{i}^{\prime}}{x^{\prime i}}=h X^{M}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\tilde{x}_{i}}{x^{i}}
$$

h in $\mathrm{O}(\mathrm{d}, \mathrm{d} ; \mathrm{Z})$ acts on toroidal coordinates only

$$
\begin{gathered}
\mathcal{E}^{\prime}\left(X^{\prime}\right)=(a \mathcal{E}(X)+b)(c \mathcal{E}(X)+d)^{-1} \\
d^{\prime}\left(X^{\prime}\right)=d(X)
\end{gathered}
$$

Buscher if fields independent of toroidal coordinates Generalisation to case without isometries

$O(D, D)$

Non-compact dimensions x^{μ}, p_{μ} continuous
Strings: take $w^{\mu}=0 \quad$ so $\frac{\partial}{\partial \tilde{x}_{\mu}}=0$, fields $\psi\left(x^{\mu}, x^{a}, \tilde{x}_{a}\right)$
For DFT, if we allow dependence on \tilde{x}_{μ}
DFT invariant under

$$
O(n, n) \times O(d, d ; \mathbb{Z})
$$

Subgroup of $O(D, D)$ preserving periodicities
$O(D, D)$ is symmetry if all directions non-compact: theory has formal $O(D, D)$ covariance

Generalised Metric Formulation

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right)
$$

2 Metrics on double space

$$
\mathcal{H}_{M N}, \eta_{M N}
$$

Generalised Metric Formulation

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right)
$$

2 Metrics on double space $\quad \mathcal{H}_{M N}, \eta_{M N}$

$$
\mathcal{H}^{M N} \equiv \eta^{M P} \mathcal{H}_{P Q} \eta^{Q N}
$$

Constrained metric

$$
\mathcal{H}^{M P} \mathcal{H}_{P N}=\delta^{M}{ }_{N}
$$

Generalised Metric Formulation

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right)
$$

2 Metrics on double space $\quad \mathcal{H}_{M N}, \eta_{M N}$

$$
\mathcal{H}^{M N} \equiv \eta^{M P} \mathcal{H}_{P Q} \eta^{Q N}
$$

Constrained metric

$$
\mathcal{H}^{M P} \mathcal{H}_{P N}=\delta^{M}{ }_{N}
$$

Covariant Transformation

$$
\begin{array}{ll}
h^{P}{ }_{M} h^{Q}{ }_{N} \mathcal{H}_{P Q}^{\prime}\left(X^{\prime}\right)= & \mathcal{H}_{M N}(X) \\
X^{\prime}=h X & h \in O(D, D)
\end{array}
$$

$O(D, D)$ covariant action

$$
S=\int d x d \tilde{x} e^{-2 d} L
$$

$$
\begin{aligned}
L= & \frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
& -2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d
\end{aligned}
$$

$\mathrm{O}(\mathrm{D}, \mathrm{D})$ covariant action

$$
\begin{gathered}
S=\int d x d \tilde{x} e^{-2 d} L \\
L=\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d
\end{gathered}
$$

L cubic! Indices raised and lowered with η

$O(D, D)$ covariant action

$$
\begin{gathered}
S=\int d x d \tilde{x} e^{-2 d} L \\
L=\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d
\end{gathered}
$$

Gauge Transformation

$$
\begin{aligned}
& \delta_{\xi} \mathcal{H}^{M N}=\xi^{P} \partial_{P} \mathcal{H}^{M N} \\
& +\left(\partial^{M} \xi_{P}-\partial_{P} \xi^{M}\right) \mathcal{H}^{P N}+\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) \mathcal{H}^{M P}
\end{aligned}
$$

$O(D, D)$ covariant action

$$
\begin{gathered}
S=\int d x d \tilde{x} e^{-2 d} L \\
L=\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d
\end{gathered}
$$

Gauge Transformation

$$
\begin{aligned}
& \delta_{\xi} \mathcal{H}^{M N}=\xi^{P} \partial_{P} \mathcal{H}^{M N} \\
& +\left(\partial^{M} \xi_{P}-\partial_{P} \xi^{M}\right) \mathcal{H}^{P N}+\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) \mathcal{H}^{M P}
\end{aligned}
$$

Rewrite as "Generalised Lie Derivative"

$$
\delta_{\xi} \mathcal{H}^{M N}=\widehat{\mathcal{L}}_{\xi} \mathcal{H}^{M N}
$$

Generalised Lie Derivative

$$
\begin{gathered}
\widehat{\mathcal{L}}_{\xi} A_{M}{ }^{N} \equiv \xi^{P} \partial_{P} A_{M}{ }^{N} \\
+\left(\partial_{M} \xi^{P}-\partial^{P} \xi_{M}\right) A_{P}{ }^{N}+\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) A_{M}{ }^{P}
\end{gathered}
$$

Generalised Lie Derivative

$$
\begin{aligned}
& \widehat{\mathcal{L}}_{\xi} A_{M}{ }^{N} \equiv \xi^{P} \partial_{P} A_{M}{ }^{N} \\
& +\left(\partial_{M} \xi^{P}-\partial^{P} \xi_{M}\right) A_{P}^{N}+\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) A_{M}{ }^{P} \\
& \widehat{\mathcal{L}}_{\xi} A_{M}{ }^{N}=\mathcal{L}_{\xi} A_{M}{ }^{N}-\eta^{P Q} \eta_{M R} \partial_{Q} \xi^{R} A_{P}{ }^{N} \\
& +\eta_{P Q} \eta^{N R} \partial_{R} \xi^{Q} A_{M}^{P}
\end{aligned}
$$

Generalized scalar curvature

$$
\begin{aligned}
\mathcal{R} & \equiv 4 \mathcal{H}^{M N} \partial_{M} \partial_{N} d-\partial_{M} \partial_{N} \mathcal{H}^{M N} \\
& -4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d+4 \partial_{M} \mathcal{H}^{M N} \partial_{N} d \\
& +\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L}
\end{aligned}
$$

Generalized scalar curvature

$$
\begin{aligned}
\mathcal{R} & \equiv 4 \mathcal{H}^{M N} \partial_{M} \partial_{N} d-\partial_{M} \partial_{N} \mathcal{H}^{M N} \\
& -4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d+4 \partial_{M} \mathcal{H}^{M N} \partial_{N} d \\
& +\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L} \\
& \quad S=\int d x d \tilde{x} e^{-2 d} \mathcal{R}
\end{aligned}
$$

Generalized scalar curvature

$$
\begin{aligned}
& \mathcal{R} \equiv 4 \mathcal{H}^{M N} \partial_{M} \partial_{N} d-\partial_{M} \partial_{N} \mathcal{H}^{M N} \\
& \quad-4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d+4 \partial_{M} \mathcal{H}^{M N} \partial_{N} d \\
& +\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L} \\
& \qquad S=\int d x d \tilde{x} e^{-2 d} \mathcal{R} \\
& \text { Gauge Symmetry } \quad \delta_{\xi} \mathcal{R}=\widehat{\mathcal{L}}_{\xi} \mathcal{R}=\xi^{M} \partial_{M} \mathcal{R} \\
& \delta_{\xi} e^{-2 d}=\partial_{M}\left(\xi^{M} e^{-2 d}\right)
\end{aligned}
$$

Generalized scalar curvature

$$
\begin{aligned}
& \mathcal{R} \equiv 4 \mathcal{H}^{M N} \partial_{M} \partial_{N} d-\partial_{M} \partial_{N} \mathcal{H}^{M N} \\
& \quad-4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d+4 \partial_{M} \mathcal{H}^{M N} \partial_{N} d \\
& +\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L} \\
& \qquad S=\int d x d \tilde{x} e^{-2 d} \mathcal{R} \\
& \text { Gauge Symmetry } \quad \delta_{\xi} \mathcal{R}=\widehat{\mathcal{L}}_{\xi} \mathcal{R}=\xi^{M} \partial_{M} \mathcal{R} \\
& \delta_{\xi} e^{-2 d}=\partial_{M}\left(\xi^{M} e^{-2 d}\right)
\end{aligned}
$$

Field equations give gen. Ricci tensor

2-derivative action

$$
S=S^{(0)}(\partial, \partial)+S^{(1)}(\partial, \tilde{\partial})+S^{(2)}(\tilde{\partial}, \tilde{\partial})
$$

Write $S^{(0)}$ in terms of usual fields
Gives usual action (+ surface term)

$$
\int d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right]
$$

$S^{(0)}=S(\mathcal{E}, d, \partial)$

2-derivative action

$$
S=S^{(0)}(\partial, \partial)+S^{(1)}(\partial, \tilde{\partial})+S^{(2)}(\tilde{\partial}, \tilde{\partial})
$$

Write $S^{(0)}$ in terms of usual fields
Gives usual action (+ surface term)

$$
\int d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right]
$$

$S^{(0)}=S(\mathcal{E}, d, \partial)$
$S^{(2)}=S\left(\mathcal{E}^{-1}, d, \tilde{\partial}\right) \quad$ T-dual!
$S^{(1)} \quad$ strange mixed terms

- Restricted DFT: fields independent of half the coordinates
- If independent of \tilde{x}, equivalent to usual action
- Duality covariant: duality changes which half of coordinates theory is independent of
- Equivalent to Siegel's formulation Hohm \& Kwak
- Good for non-geometric backgrounds

Gauge Algebra

Parameters $\quad\left(\epsilon^{i}, \tilde{\epsilon}_{i}\right) \rightarrow \Sigma^{M}$
Gauge Algebra $\quad\left[\delta_{\Sigma_{1}}, \delta_{\Sigma_{2}}\right]=\delta_{\left[\Sigma_{1}, \Sigma_{2}\right]_{C}}$

$$
\left[\widehat{\mathcal{L}}_{\xi_{1}}, \widehat{\mathcal{L}}_{\xi_{2}}\right]=-\widehat{\mathcal{L}}_{\left[\xi_{1}, \xi_{2}\right]_{\mathrm{C}}}
$$

C-Bracket:
$\left[\Sigma_{1}, \Sigma_{2}\right]_{C} \equiv\left[\Sigma_{1}, \Sigma_{2}\right]-\frac{1}{2} \eta^{M N} \eta_{P Q} \Sigma_{[1}^{P} \partial_{N} \Sigma_{2]}^{Q}$
Lie bracket + metric term
Parameters $\Sigma^{M}(X)$ restricted to N
Decompose into vector +1 -form on N C-bracket reduces to Courant bracket on N

Same covariant form of gauge algebra found in similar context by Siegel

Jacobi Identities not satisfied!

$$
J\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right) \equiv\left[\left[\Sigma_{1}, \Sigma_{2}\right], \Sigma_{3}\right]+\text { cyclic } \neq 0
$$

for both C-bracket and Courant-bracket
How can bracket be realised as a symmetry algebra?

$$
\left[\left[\delta_{\Sigma_{1}}, \delta_{\Sigma_{2}}\right], \delta_{\Sigma_{3}}\right]+\operatorname{cyclic}=\delta_{J\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)}
$$

Symmetry is Reducible

Parameters of the form $\Sigma^{M}=\eta^{M N} \partial_{N} \chi$ do not act

Gauge algebra determined up to such transformations
cf 2-form gauge field $\delta B=d \alpha$ Parameters of the form $\alpha=d \beta$
do not act

Symmetry is Reducible

Parameters of the form $\Sigma^{M}=\eta^{M N} \partial_{N} \chi$ do not act

Gauge algebra determined up to such transformations
cf 2-form gauge field $\delta B=d \alpha$
Parameters of the form $\alpha=d \beta$
do not act

Resolution:

$$
\bar{J}\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)^{M}=\eta^{M N} \partial_{N} \chi
$$

$\delta_{J\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)}$ does not act on fields

D-Bracket

$$
[A, B]_{\mathrm{D}} \equiv \widehat{\mathcal{L}}_{A} B
$$

$[A, B]_{\mathrm{D}}^{M}=[A, B]_{\mathrm{C}}^{M}+\frac{1}{2} \partial^{M}\left(B^{N} A_{N}\right)$
Not skew, but satisfies Jacobi-like identity

$$
\left.\left[A,[B, C]_{\mathrm{D}}\right]_{\mathrm{D}}=\left[[A, B]_{\mathrm{D}}\right], C\right]_{\mathrm{D}}+\left[B,[A, C]_{\mathrm{D}}\right]_{\mathrm{D}}
$$

On restricting to null subspace N
C-bracket \rightarrow Courant bracket
D-bracket \rightarrow Dorfman bracket
Gen Lie Derivative \rightarrow GLD of Grana, Minasian, Petrini and Waldram

Frames for Doubled Space

Basis, labelled by $A=I, \ldots, 2 D$

$$
\begin{aligned}
& e^{M}{ }_{A} \rightarrow e^{M}{ }_{B} \Lambda^{B}{ }_{A}, \quad \Lambda(X) \in G L(2 D, \mathbb{R}) \\
& \mathcal{H}_{A B} \equiv e^{M}{ }_{A} e^{N}{ }_{B} \mathcal{H}_{M N} \quad \hat{\eta}_{A B} \equiv e^{M}{ }_{A} e^{N}{ }_{B} \eta_{M N}
\end{aligned}
$$

e.g. Orthonormal Frame

$$
e^{M}{ }_{A} e^{N}{ }_{B} \eta_{M N}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \rightarrow \quad \hat{\eta}_{A B}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Reduces tangent space group to $O(D, D)$

Generalized Connection Coimbra, Strickland-Constable \& Waldram

$$
D_{M} W^{A}=\partial_{M} W^{A}+\tilde{\Omega}_{M}{ }^{A}{ }_{B} W^{B}
$$

$$
\tilde{\Omega}^{A}{ }_{B} W^{B} \in G L(2 D, \mathbb{R})
$$

Generalised Lie Derivative

$$
\widehat{\mathcal{L}}_{\xi} A^{N} \equiv \xi^{P} \partial_{P} A^{N}+\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) A^{P}
$$

Covariantised Lie Derivative

$$
\widehat{\mathcal{L}}_{\xi}^{D} A^{N} \equiv \xi^{P} D_{P} A^{N}+\left(D^{N} \xi_{P}-D_{P} \xi^{N}\right) A^{P}
$$

Difference is Covariant, defines TORSION

$$
\widehat{\mathcal{L}}_{\xi}^{D} A^{N}-\widehat{\mathcal{L}}_{\xi} A^{N}=T_{M P}^{N} \xi^{M} A^{P}
$$

Generalized Curvature

$$
R(U, V, W)=\left[D_{U} D_{V}\right] W-D_{[U, V]_{C}} W
$$

Scale by functions:

$$
U \rightarrow f U, V \rightarrow g V, W \rightarrow h W
$$

$$
R(f U, g V, h W)=f g h R(U, V, W)-\frac{1}{2} h \eta(U, V) D_{(f d g-g d f)} W
$$

Non-tensorial!

But tensorial for vectors with $\eta(U, V)=0$ U,V tangent to null subspace

The Connection

Coimbra, Strickland-Constable \& Waldram

$$
G L(2 D, \mathbb{R}) \rightarrow O(D) \times O(D) \times \mathbb{R}^{+}
$$

Seek torsion-Free Connection $\quad T_{M N}^{P}=0$

$$
D \mathcal{H}=0, \quad D \Phi=0
$$

Find general connection NOT UNIQUE!
Determined up to tensor A
Curvature depends on A. But A drops out of Ricci tensor, scalar curvature and Dirac equation Field equations given by Ricci tensor, indep of A
Susy variations independent of A
$\mathcal{H}^{M P} \mathcal{H}_{P N}=\delta^{M}{ }_{N}$
$S^{M}{ }_{N} \equiv \eta^{M P} \mathcal{H}_{P N} \quad$ satisfies

$$
S^{2}=1
$$

Split basis:

$$
\begin{aligned}
& e^{M}{ }_{a} \quad e^{M}{ }_{\bar{a}} \quad a, \bar{a}=1, \ldots, D \\
& S e_{a}=-e_{a}, \quad S e_{\bar{a}}=e_{\bar{a}}
\end{aligned}
$$

This form of basis preserved by $G L(D, \mathbb{R}) \times G L(D, \mathbb{R})$

$$
\mathcal{H}_{A B}=2\left(\begin{array}{cc}
g_{\bar{a} \bar{b}} & 0 \\
0 & g_{a b}
\end{array}\right), \quad \hat{\eta}_{A B}=2\left(\begin{array}{cc}
g_{\bar{a} \bar{b}} & 0 \\
0 & -g_{a b}
\end{array}\right)
$$

Partially fix gauge

$$
\begin{aligned}
& G L(D, \mathbb{R}) \times G L(D, \mathbb{R}) \rightarrow O(D) \times O(D) \times \mathbb{R}^{+} \\
& g_{a b}=\Phi^{2} \delta_{a b}, \quad g_{\bar{a} \bar{b}}=\Phi^{2} \delta_{\bar{a} \bar{b}}
\end{aligned}
$$

$O(D) \times O(D) \times \mathbb{R}^{+}$Torsion-Free Connection

$$
\begin{aligned}
& D \mathcal{H}=0, \quad D \Phi=0 \quad T_{M N}^{P}=0 \\
& \text { Take } \Phi=e^{-2 \phi} \sqrt{-g}=e^{-2 d}
\end{aligned}
$$

Gives non-unique connection

$$
\begin{aligned}
& D_{a} w^{b}=\nabla_{a} w^{b}-\frac{1}{6} H_{a}{ }^{b}{ }_{c} w^{c}-\frac{2}{9}\left(\delta_{a}{ }^{b} \partial_{c} \phi-\eta_{a c} \partial^{b} \phi\right) w^{c}+A_{a}^{+b}{ }_{c} w^{c}, \\
& D_{\bar{a}} w^{b}=\nabla_{\bar{a}} w^{b}-\frac{1}{2} H_{\bar{a}}{ }^{b}{ }_{c} w^{c}, \\
& D_{a} w^{\bar{b}}=\nabla_{a} w^{\bar{b}}+\frac{1}{2} H_{a}{ }_{a}{ }_{\bar{c}} w^{\bar{c}}, \\
& D_{\bar{a}} w^{\bar{b}}=\nabla_{\bar{a}} w^{\bar{b}}+\frac{1}{6} H_{\bar{a}}{ }^{\bar{b}}{ }_{\bar{c}} w^{\bar{c}}-\frac{2}{9}\left(\delta_{\bar{a}}{ }^{\bar{b}} \partial_{\bar{c}} \phi-\eta_{\bar{a} \bar{c}} \partial^{\bar{b}} \phi\right) w^{\bar{c}}+A_{\bar{a}}^{-\bar{b}}{ }_{\bar{c}} w^{\bar{c}},
\end{aligned}
$$

Ambiguity:A terms arbitrary

- Gualtieri: $O(D) \times O(D)$ connection
- Waldram et al: similar $O(D) \times O(D) \times \mathbb{R}^{+}$ connection, with dilaton.
- Jeon, Lee Park: similar connection, with $\mathrm{A}=0$
- Siegel: similar connection, but curvatures etc constructed without geometry
- Hohm \& Kwak; Hohm \& Zwiebach: more on Siegel construction

Generalised Geometry,

 M-Theory- Generalised Geometry doubles Tangent space, Metric + B-field, action of O(D,D)

Hitchin; Gualtieri

- DFT doubles space, doubles coordinates.
- Extended geometry: extends tangent space, metric and 3 -form gauge field, action of exceptional U-duality group

Hull; Pacheco \& Waldram

- I0-d type II sugra action in terms of extended geometry Coimbra, Strickland-Constable \& Waldram

Hillman

- II-d sugra action in terms of extended Berman, Perry et al geometry

Coimbra, Strickland-Constable \& Waldram

Double Field Theory

- Constructed cubic action, quartic has new stringy features
- T-duality symmetry, cocycles, symmetry a homotopy Lie algebra, constraints
- Restricted DFT: have non-linear background independent theory, duality covariant
- Courant bracket gauge algebra
- Stringy issues in simpler setting than SFT
- Full theory without restriction? Does it close on a geometric action with just these fields?
- SUSY: Jeon, Lee, Park; Hohm \& Kwak; Coimbra, StricklandConstable,Waldram,...
- Type II: Hohm, Kwak, Zwiebach; Coimbra, StricklandConstable, Waldram; Jeon, Lee, Park, Suh,...
- Use for non-geometric backgrounds
- General spaces, not tori?
- Doubled geometry physical and dynamical
- Early work on strings and doubled space: Duff,Tseytlin...
- Sigma model for doubled geometry: Hull; Hull \& Reid-Edwards,...
- Doubled sigma model: Quantization Hull; Hackett-Jones \& Moutsopoulos; Beta functions: Copland; Berman, Copland \& Thompson
- D-Branes: Hull; Lawrence, Schulz, Wecht; Bergshoeff \& Riccioni
- Geometry with projectors;YM DFT: Jeon, Lee, Park
- $O(10,10)$ from E_{11};West
- Non-geometry: Andriot, Larfors, Lust, Patalong; Ditetto, Fernandez-Melgarejo, Marques \& Roest
- Twisted torus: Grana \& Marques; Chatzistavrakidis \& Jonke
- Heterotic DFT: Hohm \& Kwak
- Type II DFT: Thompson; Hull; Hohm, Kwak, Zwiebach

