"Superconformal Albegra and Mathieu moonshine"

T.E.,H.Ooguri and Y.Tachikawa T.E. and K.Hikami

next speaker M.Gaberdiel
\& Elliptic genus of K3

Elliptic genus in string theory is expressed as

$$
Z_{\text {elliptic }}(z ; \tau)=\operatorname{Tr}_{\mathcal{H}_{L} \times \mathcal{H}_{R}(-1)^{F_{L}+F_{R}} e^{4 \pi i z J_{L, 0}^{3}} q^{L_{0}-\frac{c}{24}} \overline{\boldsymbol{q}}_{0}-\frac{c}{24}}
$$

and describes the topological invariants of the target manifold and counts the number of BPS states in the theory. Here L_{0} denotes the zero mode of the Visasoro operators and $\boldsymbol{F}_{\boldsymbol{L}}$ and F_{R} are left and right moving fermion numbers. In ellitpic genus the right moving sector is frozen to the supersymmetric ground states (BPS states) while in the left moving sector all the states in the Hilbert space \mathcal{H}_{L} contribute.

Elliptic genus of K3 surface is known:

$$
Z_{K 3}(z ; \tau)=8\left[\left(\frac{\theta_{2}(z ; \tau)}{\theta_{2}(0 ; \tau)}\right)^{2}+\left(\frac{\theta_{3}(z ; \tau)}{\theta_{3}(0 ; \tau)}\right)^{2}+\left(\frac{\theta_{4}(z ; \tau)}{\theta_{4}(0 ; \tau)}\right)^{2}\right]
$$

$$
\begin{aligned}
& Z_{K 3}(z=0)=24, \quad Z_{K 3}\left(z=\frac{1}{2}\right)=16+O(q) \\
& Z_{K 3}\left(z=\frac{1+\tau}{2}\right)=2 q^{-\frac{1}{2}}+O\left(q^{\frac{1}{2}}\right)
\end{aligned}
$$

Elliptic genus of a complex D-dimensional manifold is a Jacobi form of weight= 0 and index=D/2. When $D=2$, space of Jacobi form is one-dimensional and given by the above formula.

String theory on K3 has an $\mathrm{N}=4$ superconformal symmetry and its states fall into representations of $\mathrm{N}=4$ superconformal algebra (SCA). $\mathrm{N}=4$ SCA contains an affine $S U(2)_{k}$ symmetry
and has a central charge $c=6 k$. $k=n$ case decsribes complex-2n dimensional hyperKähler manifolds.

We would like to study the decomposition of the elliptic genus in terms of irreducible characters of $\mathrm{N}=4$ SCA. In $\mathrm{N}=4$ SCA, hightest-weight states $|h, I\rangle$ are charactered by

$$
L_{0}|h, \ell\rangle=h|h, \ell\rangle, \quad J_{0}^{3}|h, \ell\rangle=\ell|h, \ell\rangle
$$

and the theory possesses two different type of representations, BPS and non-BPS representations. In the case of $k=1$
there are representations (in Ramond sector)

$$
\begin{array}{ll}
\text { BPS rep. } & h=\frac{1}{4} ; \quad \ell=0, \frac{1}{2} \\
\text { non-BPS rep. } & h>\frac{1}{4} ; \quad \ell=\frac{1}{2}
\end{array}
$$

Character of a representation is given by

$$
\operatorname{Tr}_{\mathcal{R}}(-1)^{F} q^{L_{0}} e^{4 \pi i z J_{0}^{3}}
$$

Its index is given by the value at $z=0, T r_{\mathcal{R}}(-1)^{F} q^{L_{0}}$. BPS representations have a non-vanishing index

$$
\begin{aligned}
& \text { index }(B P S, \ell=0)=1 \\
& \text { index }\left(B P S, \ell=\frac{1}{2}\right)=-2
\end{aligned}
$$

Character function of $\ell=0$ BPS representation has the form

$$
c h_{k=1, h=\frac{1}{4}, \ell=0}^{\tilde{R}}(z ; \tau)=\frac{\theta_{1}(z ; \tau)^{2}}{\eta(\tau)^{3}} \mu(z ; \tau)
$$

where

$$
\mu(z ; \tau)=\frac{-i e^{\pi i z}}{\theta_{1}(z ; \tau)} \sum_{n}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)} e^{2 \pi i n z}}{1-q^{n} e^{2 \pi i z}}
$$

On the other hand the character of non-BPS representations are given by

$$
c h_{k=1, h>\frac{1}{4}, \ell=\frac{1}{2}}^{\tilde{R}}=q^{h-\frac{3}{8}} \frac{\theta_{1}(z ; \tau)^{2}}{\eta(\tau)^{3}}
$$

These have vanishing index

$$
\text { index (non-BPS rep) }=0
$$

At the unitarity bound non-BPS representation splits into a sum of BPS representations

$$
\lim _{h \rightarrow \frac{1}{4}} q^{h-\frac{3}{8}} \frac{\theta_{1}^{2}}{\eta^{3}}=c h_{k=1, h=\frac{1}{4}, \ell=\frac{1}{2}}^{\tilde{R}}+2 c h_{k=1, h=\frac{1}{4}, \ell=0}^{\tilde{R}}
$$

Function $\mu(z ; \tau)$ is a typical example of the so-called Mock theta functions (Lerch sum or Appell function). Mock theta functions look like theta functions but they have anomalous modular transformation laws and are difficult to handle. Recently there have been developments in understanding the
nature of Mock theta functions initiated by Zwegers who has developed a way to improve their modular properties. We will adopt his method of handling Mock theta functions.

It is possible to derive the following idenities

$$
\begin{aligned}
c h_{k=1, h=\frac{1}{4}, \ell=0}^{\tilde{R}}(z ; \tau) & =\left(\frac{\theta_{2}(z ; \tau)}{\theta_{2}(0 ; \tau)}\right)^{2}+\mu_{2}(\tau) \frac{\theta_{1}(z ; \tau)^{2}}{\eta(\tau)^{3}} \\
& =\left(\frac{\theta_{3}(z ; \tau)}{\theta_{3}(0 ; \tau)}\right)^{2}+\mu_{3}(\tau) \frac{\theta_{1}(z ; \tau)^{2}}{\eta(\tau)^{3}} \\
& =\left(\frac{\theta_{4}(z ; \tau)}{\theta_{4}(0 ; \tau)}\right)^{2}+\mu_{4}(\tau) \frac{\theta_{1}(z ; \tau)^{2}}{\eta(\tau)^{3}}
\end{aligned}
$$

where

$$
\begin{gathered}
\mu_{2}(\tau)=\mu\left(z=\frac{1}{2} ; \tau\right), \mu_{3}(\tau)=\mu\left(z=\frac{1+\tau}{2} ; \tau\right), \mu_{4}(\tau)=\mu\left(z=\frac{\tau}{2} ; \tau\right) \\
\mu(z ; \tau)=\frac{-i e^{\pi i z}}{\theta_{1}(z ; \tau)} \sum_{n}(-1)^{n} \frac{q^{\frac{1}{2} n(n+1)} e^{2 \pi i n z}}{1-q^{n} e^{2 \pi i z}}
\end{gathered}
$$

Then we can rewrite the ellitpic genus as

$$
Z_{K 3}=24 c h_{k=1, h=\frac{1}{4}, \ell=0}^{\tilde{R}}(z ; \tau)-8 \sum_{i=2}^{4} \mu_{i}(\tau) \frac{\theta_{1}(z ; \tau)^{2}}{\eta(\tau)^{3}}
$$

Using q-expansion of functions μ_{i} we find

$$
\begin{gathered}
8\left(\mu_{2}(\tau)+\mu_{3}(\tau)+\mu_{4}(\tau)\right)=2 q^{-\frac{1}{8}}-2 \sum_{n=1} A(n) q^{n-\frac{1}{8}} \\
\Uparrow
\end{gathered}
$$ polar term

$A(n)(n=1,2, \cdots)$ are positive integers.

At smaller values of n, Fourier coefficients $A(n)$ may be obtained by direct expansion. We find

n	1	2	3	4	5	6	7	8	\ldots
$A(n)$	45	231	770	2277	5796	13915	30843	65550	\ldots

Surprize: Dimensions of some irreducible reps. of Mathieu group M_{24} appear
dimensions : $\left\{\begin{array}{rrrrrrrr}45 & 231 & 770 & 990 & 1771 & 2024 & 2277 & \\ & 3312 & 3520 & 5313 & 5544 & 5796 & 10395 & \cdots\end{array}\right\}$

$$
A(6)=13915=3520+10395
$$

$$
A(7)=30843=10395+5796+5544+5313+2024+1771
$$

Mathieu moonshine?
T.E.-Ooguri-Tachikawa
cf. Monsterous moonshine:

$$
J(q)=\frac{1}{q}+744+196884 q+21493760 q^{2}+\cdots
$$

q-expansion coeffcients of J-function are decomposed into a sum of irred. reps. of the monster group.
$196884=1+196883,21493760=1+196883+21296876$
Mukai: enumeration of eleven K3 surfaces with finite nonAbelian automorphism group. All these groups are sugbgroups of M_{23}.

Fantasy: Is it possible that these automorphism groups at isoletd points in K3 moduli space are enhanced to M_{24} over the whole moduli space when one cosnider the elliptic genus?

On the other hand, using the method of Rademacher expansion adapted to the case of Mock theta functions (Bringmann-

Ono) we can determine the asymptotic behavior of coefficients $A(n)$ as

$$
A(n) \approx \frac{2}{\sqrt{8 n-1}} e^{2 \pi \sqrt{\frac{1}{2}\left(n-\frac{1}{8}\right)}}
$$

Above exponent may be identified as the entropy of a baby Black Hole in string theory compactified on K3 with $Q_{1}=$ $1, Q_{5}=1, D_{1}$ and D_{5} branes.

\& Twisted Elliptic Genus

Dimension of the representation equals the trace of the identity element: we may identify

$$
\begin{aligned}
& A(n)=\operatorname{Tr}_{V_{n}} 1 \\
& V_{1}=45+45^{*}, \quad V_{2}=231+231^{*}, \quad V_{3}=770+770^{*}, \ldots
\end{aligned}
$$

We may consider the trace of other group elements in M_{24}

$$
A_{g}(n)=\operatorname{Tr}_{V_{n}} g, \quad g \in M_{24}
$$

Tr g depends only on the conjugacy class of g. There exists $\mathbf{2 6}$ conjugacy classes $\{g\}$ in M_{24} and also 26 irreducible
representations $\{R\}$. We have the character table given by

$$
\chi_{R}{ }^{g}=T r_{R} g
$$

There are two types of conjugacy classes in M_{24}, type I and type II.

Conjugacy class of type I fixes at least one element out of 24 and thus they arise from the conjugacy classes of M_{23}.
On the other hand conjugacy class of type II does not have a fixed point and is intrinsically M_{24}.

For each conjugacy class we want to construct a twisted genus (analogue of Thompson series in monstrous moonshine)

$$
Z_{g}=\sum_{n=1}^{\infty} \operatorname{Tr}_{V_{n}} g \times q^{n}
$$

For instance,

$$
Z_{2 A}=-6 q+14 q^{2}-28 q^{3}+42 q^{4}-56 q^{5}+86 q^{6}+\cdots
$$

and has the right modular property $\left(Z_{2 A} \in \Gamma_{0}(2)\right)$.

Twisted genus is decomposed into massless and massive parts

$$
Z_{g}(\tau, z)=\chi_{g} c h_{h=\frac{1}{4}, I=0}^{\tilde{R}}-A_{g}(\tau) \frac{\theta_{1}(\tau, z)^{2}}{\eta(\tau)^{3}}
$$

Here χ_{g} is the Euler number assigned to the class g

g	1 A	2A	3A	5 A	4B	7A	8A	6A	11A	15A	14A	23 A	typell
χ_{g}	24	8	6	4	4	3	2	2	2	1	1	1	0

χ_{g} vanishes for type II classes.

conjugacy class 1A	cycle shape 1^{24}	()
2A	$1^{8} \cdot 2^{8}$	$(1,8)(2,12)(4,15)(5,7)(9,22)(11,18)(14,19)(23,24)$
3A	$1^{6} \cdot 3^{6}$	$(3,18,20)(4,22,24)(5,19,17)(6,11,8)(7,15,10)(9,12,14)$
5A	$1^{4} \cdot 5^{4}$	$(2,21,13,16,23)(3,5,15,22,14)(4,12,20,17,7)(9,18,19,10,24)$
4B	$1^{4} \cdot 2^{2} \cdot 4^{4}$	$(1,17,21,9)(2,13,24,15)(3,23)(4,14,5,8)(6,16)(12,18,20,22)$
7A	$1^{3} \cdot 7^{3}$	$(1,17,5,21,24,10,6)(2,12,13,9,4,23,20)(3,8,22,7,18,14,19)$
7B	$1^{3} \cdot 7^{3}$	$(1,21,6,5,10,17,24)(2,9,20,13,23,12,4)(3,7,19,22,14,8,18)$
8A	$1^{2} \cdot 2^{1} \cdot 4^{1} \cdot 8^{2}$	$(1,13,17,24,21,15,9,2)(3,16,23,6)(4,22,14,12,5,18,8,20)(7,11)$
6A	$1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 6^{2}$	$(1,8)(2,24,11,12,23,18)(3,20,10)(4,15)(5,19,9,7,14,22)(6,16,13)$
11A	$1^{2} \cdot 11^{2}$	$(1,3,10,4,14,15,5,24,13,17,18)(2,21,23,9,20,19,6,12,16,11,22)$
15A	$1^{1} \cdot 3^{1} \cdot 5^{1} \cdot 15^{1}$	$(2,13,23,21,16)(3,7,9,5,4,18,15,12,19,22,20,10,14,17,24)(6,8,11)$
15B	$1^{1} \cdot 3^{1} \cdot 5^{1} \cdot 15^{1}$	$(2,23,16,13,21)(3,12,24,15,17,18,14,4,10,5,20,9,22,7,19)(6,8,11)$
14A	$1^{1} \cdot 2^{1} \cdot 7^{1} \cdot 14^{1}$	$(1,12,17,13,5,9,21,4,24,23,10,20,6,2)(3,18,8,14,22,19,7)(11,15)$
14B	$1^{1} \cdot 2^{1} \cdot 7^{1} \cdot 14^{1}$	$(1,13,21,23,6,12,5,4,10,2,17,9,24,20)(3,14,7,8,19,18,22)(11,15)$
23A	$1^{1} \cdot 23^{1}$	($1,7,6,24,14,4,16,12,20,9,11,5,15,10,19,18,23,17,3,2,8,22,21)$
23B	$1^{1} \cdot 23^{1}$	($1,4,11,18,8,6,12,15,17,21,14,9,19,2,7,16,5,23,22,24,20,10,3)$
12B	12^{2}	$(1,12,24,23,10,8,18,6,3,21,2,7)(4,9,11,15,13,16,20,5,22,17,14,19)$
6B	6^{4}	$(1,24,10,18,3,2)(4,11,13,20,22,14)(5,17,19,9,15,16)(6,21,7,12,23,8)$
4C	4^{6}	$(1,23,18,21)(2,12,10,6)(3,7,24,8)(4,15,20,17)(5,14,9,13)(11,16,22,19)$
3B	3^{8}	$(1,10,3)(2,24,18)(4,13,22)(5,19,15)(6,7,23)(8,21,12)(9,16,17)(11,20,14)$
2B	2^{12}	$(1,8)(2,10)(3,20)(4,22)(5,17)(6,11)(7,15)(9,13)(12,14)(16,18)(19,23)(21,24)$
10A	$2^{2} \cdot 10^{2}$	$(1,8)(2,18,21,19,13,10,16,24,23,9)(3,4,5,12,15,20,22,17,14,7)(6,11)$
21 A	$3^{1} \cdot 21^{1}$	$(1,3,9,15,5,12,2,13,20,23,17,4,14,10,21,22,19,6,7,11,16)(8,18,24)$
21B	$3^{1} \cdot 21^{1}$	$(1,12,17,22,16,5,23,21,11,15,20,10,7,9,13,14,6,3,2,4,19)(8,24,18)$
4A	$2^{4} \cdot 4^{4}$	$(1,4,8,15)(2,9,12,22)(3,6)(5,24,7,23)(10,13)(11,14,18,19)(16,20)(17,21)$
12A	$2^{1} \cdot 4^{1} \cdot 6^{1} \cdot 12^{1}$	$(1,15,8,4)(2,19,24,9,11,7,12,14,23,22,18,5)(3,13,20,6,10,16)(17,21)$

Twisted genera for all conjugacy classes have been obtained. They reproduce correct lower-order expansion coefficients and are invariant under the Hecke subgroup $\Gamma_{0}(N)$

$$
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), a d-b c=1, c \equiv 0, \bmod N\right\}
$$

N denotes the order of the element g.
M.Cheng,Gaberdiel,Hohenegger and Volpato, T.E. and K.Hikami

From the study of $K 3$ surface with $Z_{p}(\mathrm{p}=2,3,5,7)$ symmetry, for instance, twisted genera of classes $p A(p=2,3,5,7)$ are known

$$
Z_{p A}(z ; \tau)=\frac{2}{p+1} \phi_{0,1}(z ; \tau)+\frac{2 p}{p+1} \phi_{2}^{(p)}(\tau) \phi_{-2,1}(z ; \tau)
$$

where

$$
\phi_{0,1}(z ; \tau)=\frac{1}{2} Z_{K 3}(z ; \tau), \quad \phi_{-2,1}(z ; \tau)=-\frac{\theta_{1}(z ; \tau)^{2}}{\eta(\tau)^{6}}
$$

are the basis of Jacobi forms with index=1 and

$$
\begin{aligned}
\phi_{2}^{(p)}(\tau) & =\frac{24}{p-1} q \partial_{q} \log \left(\frac{\eta(p \tau)}{\eta(\tau)}\right), \\
& =\frac{24}{p-1} \sum_{k=1} \sigma_{1}(k)\left(q^{k}-p q^{p k}\right)
\end{aligned}
$$

is an element of $\Gamma_{0}(p)$.

In the case of type II twisted genera are modular forms of $\Gamma_{0}(N)$ with a multiplier system (invariant up to a phase). They are given in terms of quotients of eta functions.

$$
\begin{aligned}
Z_{2 B}(z ; \tau) & =2 \frac{\eta(\tau)^{8}}{\eta(2 \tau)^{4}} \phi_{-2,1}(z ; \tau) \\
Z_{3 B}(z ; \tau) & =2 \frac{\eta(\tau)^{6}}{\eta(3 \tau)^{2}} \phi_{-2,1}(z ; \tau) \\
Z_{4 A}(z ; \tau) & =2 \frac{\eta(2 \tau)^{8}}{\eta(4 \tau)^{4}} \phi_{-2,1}(z ; \tau) \\
Z_{4 C}(z ; \tau) & =2 \frac{\eta(\tau)^{4} \eta(2 \tau)^{2}}{\eta(4 \tau)^{2}} \phi_{-2,1}(z ; \tau)
\end{aligned}
$$

etc. Thus we have a complete list of the twisted genera for 26
conjugacy classes. Making use of them we can uniquely decompose the coefficients of K3 elliptic genus into irreducible representations of M_{24} at arbitrary level.

$2 A$	$3 A$	$5 A$	$4 B$
-6	0	0	2
14	-6	2	-2
-28	10	0	-4
42	0	-6	2
-56	-18	2	8
86	20	0	-2
-138	0	6	-10
188	-30	0	4
-238	42	-10	10
336	0	6	-8
-478	-60	0	-14
616	62	8	8
-786	0	0	22
1050	-90	-18	-6
-1386	118	4	-26
1764	0	0	12
-2212	-156	14	28
2814	170	0	-18
-3612	0	-24	-36
4510	-228	14	14
-5544	270	0	48
6936	0	18	-16
-8666	-360	0	-58
10612	400	-36	28
-12936	0	12	64
15862	-510	0	-34
-19420	600	30	-76
23532	0	0	36
-28348	-762	-50	100
34272	828	22	-40
-41412	0	0	-116
49618	-1062	34	50
-59178	1220	0	126
70758	0	-72	-66
-84530	-1518	26	-154
100310	1670	0	70

[^0]11 A
【NOOONONNOONNOOO YONNONO NOOONONサONONOO

14A
K్NTMOOOOOONOONNOOONOOOONOOTOOOONONOOO

$4 C$
2
6
-4
-6
0
6
-2
-12
10
16
-6
-16
6
18
-10
-28
12
38
-20
-42
16
48
-18
-60
32
78
-36
-84
36
96
-44
126
62
150
-66
170
3B

0
-14
-12
12
-16
30
-42
42
-70
84
-110
126
-166

\& Mathieu moonshine

Orthogonality relation of characters:

$$
\sum_{g} n_{g} \chi_{R^{\prime}}^{g} \bar{\chi}_{R}^{g}=|G| \delta_{R R^{\prime}}
$$

n_{g} is the number of elements in the conjugacy class g and $|G|$ denotes the order of the group. Let $c_{R}(n)$ be he multiplicity of representation R in the decompostion of K3 elliptic genus at level n. We then have

$$
\sum_{R} c_{R}(n) \chi_{R}^{g}=A_{g}(n)
$$

Then using the orthogonality relation we find

$$
\sum_{g} \frac{1}{|G|} n_{g} \bar{\chi}_{R}^{g} A_{g}(n)=c_{R}(n)
$$

We have checked that the multiplicities $c_{R}(n)$ are all positive integers upto $n=1000$ and this gives a very strong evidence for Mathieu moonshine conjecture.
T.Gannon now has a mathematical proof of Mathieu moonshine (to appear).
$\%$ Borcherds product and lift of a Jacobi form

Borcherds lift:

Go back to K3 ellitpic genus

$$
Z_{K 3}(\tau ; z) \equiv Z_{1 A}(\tau ; z)=2 \phi_{0,1}(\tau ; z)
$$

and consider its "second quantized" version
DVV
$\mathcal{M}(\Omega)=\sum_{m}^{\infty} Z_{K 3}^{[m]}(\tau, z) p^{m}=\exp \left(\sum_{m=1}^{\infty} T_{m}\left(Z_{K 3}(\tau, z)\right) p^{m}\right)$
where $Z_{K 3}^{[m]}$ denotes the elliptic genus of a m-th symmetric
product of $K 3$ and T_{m} is the Hecke transformation

$$
T_{m}\left(Z_{K 3}(\tau ; z)\right)=m^{-1} \sum_{\substack{a d=m \\ b=0 . . d-1}} Z_{K 3}\left(\frac{a \tau+b}{d} \tau, a z\right)
$$

This sum is written into an infinite product form

$$
\mathcal{M}(\Omega)=\prod_{\substack{m=1 \\ n=0, r \in \mathrm{Z}}}\left(1-p^{m} q^{n} y^{r}\right)^{-c_{1 A}(n m, r)}
$$

Here $c_{1 A}(n, r)$ are expansion coefficients of $Z_{K 3}$

$$
Z_{1 A}(\tau ; z)=\sum_{n, \ell} c_{1 A}(n, r) q^{n} y^{r}
$$

By symmetrizing in p, q we can construct a Siegel modular form

$$
\begin{equation*}
\Phi(\Omega)=\prod_{\substack{n \geq 0, m \geq 0 \\ r \in \mathbb{Z}}}\left(1-p^{m} q^{n} y^{r}\right)^{c_{1 A}(n m, r)} \tag{1}
\end{equation*}
$$

(when $n=m=0, r<0$). It is well-known that this is the $w t=10$ Igusa form. One also finds a "Hodge anomaly" term

$$
\Phi(\Omega) \mathcal{M}(\Omega)=p \eta^{24}(\tau, z) \phi_{-2,1}(\tau, z)
$$

Additive lift:

On the other hand class 1A has a cycle shape 1^{24} and one
may introduce a wt=10 Jacobi form

$$
\eta_{1 A}(\tau ; z)=\eta(\tau)^{24} \phi_{-2,1}(\tau ; z)
$$

We consider the horizontal lift

$$
\begin{equation*}
\Phi(\Omega)=\sum_{m \geq 1} T_{m}\left(\eta_{1 A}(\tau ; z)\right) p^{m} \tag{2}
\end{equation*}
$$

Then the above sum (2) becomes also a Siegel modular form of $w t=10$. It is known that these two Siegel forms in fact agree.

Borcherds lift (1)= additive lift (2)

Hence we obtain the correspondence of Jacobi forms;

$$
Z_{1 A} \Longleftrightarrow \eta_{1 A}=\eta^{24} \times \phi_{-2,1} \text { which maps a }
$$

twisted genus to an eta product.
The above identiy implies an infinite number of relations

$$
\begin{aligned}
& Z_{1 A}=-T_{2}\left(\eta_{1 A}\right) / \eta_{1 A} \\
& Z_{1 A}{ }^{2} / 2-T_{2}\left(Z_{1 A}\right)=T_{3}\left(\eta_{1 A}\right) / \eta_{1 A}, \cdots
\end{aligned}
$$

It is possible to consider "twisted" version of the above correspondence such as

$$
Z_{2 A} \Longleftrightarrow \eta_{2 A}=\eta(\tau)^{8} \eta(2 \tau)^{8} \times \phi_{-2,1}
$$

Note that class 2A has a cycle shape $1^{8} 2^{8}$. Relevance of cycle shape and eta product is very well-known. Mason,

McKay,,,

The pairing between twisted K3 genus and eta product holds for classes 2A,3A,4B,5A,8A. Gritsenko-Nikulin,Sen,Gritsenko-Clery,Dabholkar-Nampuri,Govindarajan,,,

We studied the correspondence in detail and found that the following relation holds for all type I conjugacy classes

$$
\begin{equation*}
Z_{g}=-T_{2}\left(\eta_{g}\right) / \eta_{g}, \cdots \tag{3}
\end{equation*}
$$

(Above formula becomes modified in the case of classes 11A, 14A, 15A, 23A when the Jacobi form η_{g} has a vanishing or negative weight.)

\& Recent Developments

Umbral moonshine: Cheng, Duncan and Harvey

Consider a series of Jacobi forms with index $m=k+1$ ($m=$
$2,3,4,5,7)$

$$
\begin{aligned}
& Z(m=2)= 8 \times[X+Y+Z] \\
& Z(m=3)= 4[X Y+Y Z+Z X] \\
& Z(m=4)= 8 X Y Z \\
& Z(m=5)=4\left[X^{2} Y Z+\cdots\right]-2\left[X^{2} Y^{2}+\cdots\right] \\
& Z(m=7)=-4\left[X^{3} Y^{3}+\cdots\right]+4\left[X^{3} Y^{2} Z+\cdots\right] \\
& \quad-8 X^{2} Y^{2} Z^{2}
\end{aligned} \quad \begin{aligned}
\text { where } X \equiv \frac{\theta_{2}(z)^{2}}{\theta_{2}(0)^{2}}, Y \equiv \frac{\theta_{3}(z)^{2}}{\theta_{3}(0)^{2}}, Z \equiv \frac{\theta_{4}(z)^{2}}{\theta_{4}(0)^{2}}
\end{aligned}
$$

These Jacobi forms are characterized by their q^{0} term

$$
\begin{equation*}
Z(m) \approx 2 y+\left(\frac{24}{m-1}-4\right)+2 y^{-1} \tag{4}
\end{equation*}
$$

It turns out that the expansion of the above Jacobi forms in terms of $\mathcal{N}=4$ characters all exhibit moonshine phenomena, with the group M_{24} for $m=2$ and M_{12} for $m=3$ etc.

Note:
At $m=3$, for instance, there exist two Jacobi forms with index
2

$$
J_{1}=X^{2}+Y^{2}+Z^{2}, \quad J_{2}=X Y+Y Z+Z X
$$

It is known that the identity operator in NS sector is contained in J_{1}. The elliptic genus of symmetric product $K 3^{[2]}$, for instance, is given by

$$
48 J_{1}+60 J_{2}
$$

It is somewhat awkward to consider $Z(m=3)=4 J_{2}$ which does not contain the identity operator. Thus $Z(m=3)$ may not possess well-defined geometrical significance. The same comment applies to all cases $m \geq 3$.

We point out Umbral series still appears to give a natural extension of original Mathieu moonshine. Let us consider an
infinite product

$$
\begin{equation*}
\mathcal{M}_{k}=\prod\left(1-p^{m} q^{n} y^{r}\right)^{-k c(n m, r)} \tag{5}
\end{equation*}
$$

Here $c(n, r)$ are the expansion coefficients of $Z(m=k+1)$. Umbral condition (4) implies $c(-1)=2, c(0)=24 / k-4$.
Thus we have a Hodge anomaly

$$
\begin{aligned}
& \prod\left(\left(1-y q^{n}\right)^{2}\left(1-q^{n}\right)^{24 / k-4}\left(1-y^{-1} q^{n}\right)^{2}\right)^{k} \\
& =\left(\eta^{24 / k} \phi_{-2,1}\right)^{k}=\eta^{24} \phi_{-2,1}^{k}
\end{aligned}
$$

Thus it seems reasonable to consider a Jacobi form

$$
\eta(m)=\eta^{24} \phi_{-2,1}^{m-1}
$$

By computing the Hecke transformation of $\eta(m)$ we find

$$
Z(m)=-\frac{1}{(m-1)} \frac{T_{2}(\eta(m))}{\eta(m)}
$$

for $m=3,4,5$ and an additive correction term of $1 / 2 \cdot \eta(m=$
7) for $m=7$.

Idetification of target manifold is unclear in Umbral moonshine. Revelevant algebra is either $\mathcal{N}=4$ (hyperKäler) or $\mathcal{N}=2$ (CY). We have studied the expansion of $Z(m=3)$ in terms of characters of $\mathcal{N}=2$ representations.

$$
\begin{aligned}
& Z(m=3)=\operatorname{massless}(N=2, Q=0) \\
& +\sum_{n} F_{1}(n) \operatorname{massive}(N=2, Q= \pm 1) \\
& +\sum_{n}^{n} F_{2}(n) \operatorname{massive}(N=2, Q= \pm 2)
\end{aligned}
$$

F_{1}, F_{2} are decomposed into sums of representations of group $S L_{2}(11)$.

Summary

- There is a strong evidence for Mathieu mooonshine phenomenon for K3 surface.
- It is beyond classical geometry and no fundamental explanations so far.
- Individual K3 surfaces (with its holomorphic structure) do not possess symmetry under (subgroups of) M_{24}. Gaberdiel-Hohenegger-Volpato. Rather the symmetry should act on the BPS states or topololgical sector of the theory and this seems a very sublte situation.
- Umbral moonshine gives a natural generalization of Mathieu moonshine although its geometrical significance is somewhat obscure.
- We may use $\mathcal{N}=2$ algebra instead of $\mathcal{N}=4$ and find moonshine phenomenon.

[^0]:

