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Two Related Motivations

Entropy of black holes remains one of the most important and precise
clues about the microstructure of quantum gravity.

Can we compute exact quantum entropy of black holes including all
corrections both microscopically and macroscopically?

Holography has emerged as one of the central concepts regarding the
degrees of freedom of quantum gravity.

Can we find simple example of AdS/CFT holgraphy where we might be
able to ‘prove’ it exactly?
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Black Hole Entropy Bekenstein [72]; Hawking[75]

For a BPS black hole with electric charge vector Q and magnetic charge
vector P, the leading Bekenestein- Hawking entropy precisely matches the
logarithm of the degeneracy of the corresponding quantum microstates
(for large charges) in accordance with the Boltzmann relation:

d(Q,P) ∼ exp [
A(Q,P)

4
] + . . . (|Q|, |P| >> 1)

Strominger & Vafa [96]

This beautiful approximate agreement raises two important questions:

What exact formula is this an approximation to?

Can we systematically compute corrections to both sides of this
formula, perturbatively and nonperturbatively in 1/|Q| and may be
even exactly for arbitrary finite values of the charges?
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Finite Size Effects or Going Beyond Thermodynamics

We do not know which phase of string theory might correspond to
the real world. For such a theory under construction, a useful strategy
is to focus on universal properties that must hold in all phases.
One universal requirement for a quantum theory of gravity is that in
any phase of the theory that admits a black hole, it must be possible
to interpret black hole as a statistical ensemble of quantum states.

Finite size corrections to the entropy, unlike the leading area formula,
depend on the details of the phase, and provide a sensitive probe of
short distance degrees of freedom of quantum gravity.

This is an extremely stringent constraint on the consistency of the theory
since it must hold in all phases for all black holes to all orders in 1/Q.
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Quantum Entropy and AdS2/CFT1 Sen [08]

Near horizon geometry of a BPS black hole is AdS2 × S2.

Using holography, a quantum generalization of Wald entropy is given
in terms of a Wilson line expectation value

W (Q,P) =

〈
exp

[
− i QI

∫ 2π

0
AI dθ

]〉finite

AdS2

I = 0, . . . nv .

This gives a precise quantum version of the equation we want to prove

d(Q,P) = W(Q,P)

Our goal will be to compute both sides and compare.

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 7 / 39



Quantum Entropy Localization Mock Modularity

Quantum Entropy and AdS2/CFT1 Sen [08]

Near horizon geometry of a BPS black hole is AdS2 × S2.

Using holography, a quantum generalization of Wald entropy is given
in terms of a Wilson line expectation value

W (Q,P) =

〈
exp

[
− i QI

∫ 2π

0
AI dθ

]〉finite

AdS2

I = 0, . . . nv .

This gives a precise quantum version of the equation we want to prove

d(Q,P) = W(Q,P)

Our goal will be to compute both sides and compare.

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 7 / 39



Quantum Entropy Localization Mock Modularity

Quantum Entropy and AdS2/CFT1 Sen [08]

Near horizon geometry of a BPS black hole is AdS2 × S2.

Using holography, a quantum generalization of Wald entropy is given
in terms of a Wilson line expectation value

W (Q,P) =

〈
exp

[
− i QI

∫ 2π

0
AI dθ

]〉finite

AdS2

I = 0, . . . nv .

This gives a precise quantum version of the equation we want to prove

d(Q,P) = W(Q,P)

Our goal will be to compute both sides and compare.

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 7 / 39



Quantum Entropy Localization Mock Modularity

Quantum Entropy and AdS2/CFT1 Sen [08]

Near horizon geometry of a BPS black hole is AdS2 × S2.

Using holography, a quantum generalization of Wald entropy is given
in terms of a Wilson line expectation value

W (Q,P) =

〈
exp

[
− i QI

∫ 2π

0
AI dθ

]〉finite

AdS2

I = 0, . . . nv .

This gives a precise quantum version of the equation we want to prove

d(Q,P) = W(Q,P)

Our goal will be to compute both sides and compare.

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 7 / 39



Quantum Entropy Localization Mock Modularity

Computation of the quantum degeneracies d(Q,P)

In general N = 2 compactifications this is a very hard dynamical problem
and requires the computation of the number of bound states of some
number of D-branes. Fortunately, for a class of states this problem has
been completely solved and d(Q,P) are computable explicitly:

Half-BPS states in N = 4 compactifications.

One-eighth states in N = 8 compactifications.

Quarter-BPS states in N = 4 compactifications.

In all cases, the degeneracies are given by Fourier coefficients of certain
modular objects as we explain shortly.

N = 4 compactification is Heterotic on T 6 ∼ Type-II on K 3× T 2.

N = 8 compactification is Type-II on T 6.
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Half-BPS states in Heterotic on T 6

These are dual to purely electric states (P = 0). The degeneracy d(Q)
depends only on the duality invariant n := Q2/2. And d(n) are given in
terms of Fourier coefficients of a modular form of weight −12:

F (τ) =
1

η24(τ)
=

∞∑
n=−1

c(n)qn

d(n) := c(n) = p24(n + 1)

where η(τ) is the familiar Dedekind eta function

η(τ) = q
1

24

∞∏
n=1

(1− qn) with q := e2πiτ

Dabholkar & Harvey [89]

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 9 / 39



Quantum Entropy Localization Mock Modularity

One-eighth BPS states in Type-II on T 6

Now, the degeneracy d(Q,P) depends only on the U-duality invariant
∆ = Q2P2 − (Q · P)2, and d(∆) is given in terms of the Fourier
coefficients of :

A(τ, z) =
ϑ2

1(τ, z)

η6(τ)
=
∑
n,`

c(n, `)qny `

ϑ1(τ, z) = q
1
8 (y

1
2 − y−

1
2 )
∞∏
n=1

(1− qn)(1− yqn)(1− y−1qn) ,

with y := e2πiz . The c(n, `) depend only on 4n − `2 so we can talk about
C (4n − `2) and the degeneracies are given by d(∆) := (−1)∆+1C (∆).

Moore, Maldacena, Strominger [99]

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 10 / 39
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Jacobi Forms

The function A(τ, z) is a (weak) Jacobi form of weight −2 and index 1.
A Jacobi form is a holomorphic function ϕ(τ, z) from H×C to C which is

“modular in τ and elliptic in z” in the sense that it transforms under the
modular group (global diffeomorphisms) as

ϕ
( aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k e

2πimcz2

cτ+d ϕ(τ, z)

and under the translations (global gauge transformations) of z by Zτ + Z
as

ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z) ∀ λ, µ ∈ Z ,

where k is an integer and m is a positive integer.

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 11 / 39
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Quarter-BPS states in Heterotic on T 6

Now, the degeneracy d(Q,P) depends on the three T-duality invariants
m := P2/2, n := Q2/2, and ` := Q · P, and d(m, n, l) is given in terms of
Fourier coefficients of a Siegel modular form of weight -10

1

Φ10(σ, τ, z)

Now extracting the Fourier coefficients is more subtle because this
function has a double pole. Understanding the consequences of this
meromorphy has revealed very interesting physics and mathematics
(wall-crossing, Borcherds algebras, mock modular forms) .
For our purposes, we will first expand in p := e2πiσ to get

1

Φ10(σ, τ, z)
=
∞∑
−1

pmψm(τ, z)

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 12 / 39
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Quarter-BPS states in Heterotic on T 6

ψm(τ, z) =
1

A(τ, z)

1

η24(τ)
χm+1(τ, z)

Transforms as Jacobi form of weight −10 and index m but has a pole in z .

Here χm+1(τ, z) is the elliptic genus of symmetric product m + 1 copies of
K 3. Its Fourier coefficients can be computed from Fourier coefficients of

χ1(τ, z) = 2B(τ, z) = 8
[ϑ2

2(τ, z)

ϑ2
2(0, z)

+
ϑ2

3(τ, z)

ϑ2
3(0, z)

+
ϑ2

4(τ, z)

ϑ2
4(0, z)

]
Dijkgraaf, Verlinde, Verlinde [96]; Gaiotto, Yin, Strominger [06]; David, Sen[07]

We turn briefly to W (Q,P) and then return to d(Q,P) again.
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Computing W (Q,P) and AdS2 Functional Integral

Figure: Wilson line inserted at the boundary with a cutoff at r = r0.

ds2 = (r 2 − 1)dθ2 +
dr 2

r 2 − 1
1 ≤ r < r0

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 14 / 39
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Localization in Supergravity

A formal functional integral over spacetime string fields in AdS2. One
can integrate out massive fields to get a functional integral over
supergravity fields. Even so, it seems almost impossible to tackle.

One of our main results is evaluation of a functional integral in
supergravity by ‘localizing’ onto finite-dimensional manifold in field
space. of instanton solutions

N = 2 supergravity coupled to nv vector multiplets

Vector multiplet: vector field AI
µ, complex scalar X I , SU(2) triplet of

auxiliary fields Y I
ij , fermions ΩI

i . Here i in doublet.

XI =
(

X I ,ΩI
i ,A

I
µ,Y

I
ij

)
I = 0, . . . , nv .
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Localizing Instanton Solution

X I = X I
∗ +

C I

r
, X̄ I = X̄ I

∗ +
C I

r

Y I1
1 = −Y I2

2 =
2C I

r 2
, f I

µν = 0 .

Solves a major piece of the problem by identifying the off-shell field
configurations onto which the functional integral localizes. This instanton
is universal and does not depend on the physical action.

Scalar fields are very off-shell far away in field space from the classical
attractor values X I

∗ and auxiliary fields get nontrivial position dependence.
Gravity multiplet not excited. Gupta & Murthy [12].
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Renormalized Action for Chiral Physical Actions

A chiral physical action is described by a prepotential F which is a
function of the scalar superfields. We substitute the above solution
and can extract the finite piece.

After a tedious algebra, one obtains a remarkably simple form for the
renormalized action Sren as a function of {C I}.

Sren(φ, q, p) = −πqIφ
I + F(φ, p)

with φI := e I∗ + 2C I and F given by

F(φ, p) = −2πi

[
F
(φI + ipI

2

)
− F̄

(φI − ipI

2

)]
,

where e I∗ are the attractor values of the electric field.
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Integration Measure

The line element on φ-space is

dΣ2 = MIJ δφ
I δφJ

with the metric

MIJ = KIJ −
1

4

∂K

∂φI
∂K

∂φJ

given in terms of the Kähler potential

e−K := −i(X I F̄I − X̄ IFI )

The functional integral has collpased to an ordinary integral∫ nv∏
I=0

dφI
√

det(M) eSren(φ) .
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Quantum Entropy Localization Mock Modularity

For N = 2 chiral truncation of N = 8 the classical prepotential is quantum
exact

F (X ) =
X 1X aX bCab

X 0
a = 1, . . . 6 .

It turns out one can even evaluate the finite-dimensional integral to obtain

W1(∆) = (−1)∆+1 2π
( π

∆

)7/2
I 7

2

(
π
√

∆
)
.

where ∆ = q2p2 − (p · q)2 is the U-duality invariant and

Iρ(z) =
1

2πi

∫ ε+i∞

ε−i∞

dσ

σρ+1
exp[σ +

z2

4σ
]

is the Bessel function of first kind of index ρ.

Note that the contour is parallel to imaginary axis and not real axis.
Related to the analytic continuation of the conformal factor of the metric.
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Quantum Entropy Localization Mock Modularity

Table: Comparison of the microscopic degeneracy d(∆) with W1(∆)
and the exponential of the Wald entropy. Note d(∆) positive!)

∆ 3 4 7 8 11 12 15

d(∆) 8 12 39 56 152 208 513

W1(∆) 7.972 12.201 38.986 55.721 152.041 208.455 512.958

exp(π
√

∆) 230.765 535.492 4071.93 7228.35 33506 53252 192401

The area of the horizon goes as 4π
√

∆ in Planck units. Already for
∆ = 12 this area would be 50, and one might expect that the Wald
entropy would be a good approximation. Not true! The discrepancy
between the degeneracy and the exponential of the Wald entropy arises
entirely from integration over massless fields.
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Quantum Entropy Localization Mock Modularity

The d(∆) admits an exact expansion. Rademacher

d(∆) =
∞∑
c=1

dc

dc(∆) = (−1)∆+1 2π
( π

∆

)7/2
I 7

2

(π√∆

c

) 1

c9/2
Kc(∆) .

The sum Kc(∆) is a discrete version of the Bessel function

Kc(∆) := e5πi/4
∑

−c≤d<0;
(d,c)=1

e2πi d
c

(∆/4) M(γc,d)−1
`1 e2πi a

c
(−1/4)

An exact expansion and not just an asymptotic expansion. Because
of localization, it is meaningful to consider subleading exponentials.

It is guaranteed to add up to an integer but only after adding all
terms and not at any finite order even though it converges very fast.
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Quantum Entropy Localization Mock Modularity

Nonperturbative contributions from orbifolds

Consider Zc orbifolds of the disk which implies 0 ≤ θ < 2π/c . But by
a coordinate trasnformation θ̃ = cθ and r̃ = r/c we get the same
asymptotic metric

ds2 ∼ r̃ 2d θ̃2 +
dr̃ 2

r̃ 2

Hence there are more localizing instantons but with an action reduced
by a factor of c . This correctly reproduces the Bessel function with a
reduced factor of c in the argument.

If we accompany by a shift in a charge lattice then one also picks up
a phase from the Wilson line exactly as in the sum Kc .

It seems possible therefore to reproduce the integer exactly.
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Quantum Entropy Localization Mock Modularity

Caveats and Open Problems

Implement localization without using N=2 truncation of N=8
Black hole not charged under truncated gauge fields

Show that D-terms do not contribute.
Near horizon has enhanced supersymmetry

Show that hypers do not contribute.
Hypers are flat directions of Wald entropy.

Show that the orbifold phases reproduce the Kloosterman sum.
Wilson lines on orbifolds give right structure of phases

In general, there will be additional contributions from
brane-instantons and one-loop determinants.
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Quantum Entropy Localization Mock Modularity

On a philosophical note,

The functional integral of quantum string theory near black hole
horizons appears to have the ingredients to reproduce an integer —
the bits of the branes. It appears to be an exact dual description with
its own rules of computation rather than an emergent description.

That the bulk can ‘see’ this integrality may be relevant for
information retrieval because a necessary requirement for information
retrieval is that gravity sees the ‘discreteness’ of quantum states.

Conversely, we can use the data from microscopic bits to learn about
the nonperturbative rules of the functional integral of quantum
gravity. It is useful to have explicit answers to compare with.

String theory is amazingly rigid as a quantum theory of gravity!
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Quantum Entropy Localization Mock Modularity

Ramanujan’s example

In Ramanujan’s famous last letter to Hardy in 1920, he gives 17 examples
of mock theta functions, without giving any complete definition of this
term. A typical example (Ramanujan’s second mock theta function of
“order 7” — a notion that he also does not define) is

F7(τ) = −q−25/168
∞∑
n=1

qn2

(1− qn) · · · (1− q2n−1)

= −q143/168
(
1 + q + q2 + 2q3 + · · ·

)
.

Hints of modularity such as Cardy behavior of Fourier coefficients but not
quite modular! Despite much work, this fascinating ‘hidden’ modular
symmetry remained mysterious until the thesis of Zwegers [2005].
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Quantum Entropy Localization Mock Modularity

Mock Modular Form and its Shadow Zwegers[05], Zagier [07]

A mock modular form h(τ) of weight k is the first of the pair (h, g)

1 g(τ) is a modular form of weight 2− k ,

2 the sum ĥ = h + g∗, of h is modular with weight k with

g∗(τ, τ̄) =

(
i

2π

)k−1
∫ ∞
−τ̄

(z + τ)−kg(−z̄) dz .

Then g is called the shadow of h and ĥ is called modular completion of h
which obeys a ‘holomorphic anomaly’ equation

(4πτ2)k
∂ĥ(τ)

∂τ̄
= −2πi g(τ).

Ramanujan never specified the shadow which was part of the mystery.
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2 the sum ĥ = h + g∗, of h is modular with weight k with

g∗(τ, τ̄) =

(
i

2π

)k−1
∫ ∞
−τ̄

(z + τ)−kg(−z̄) dz .

Then g is called the shadow of h and ĥ is called modular completion of h
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Quantum Entropy Localization Mock Modularity

“My dream is that I will live to see the day when our young physicists,
struggling to bring the predictions of superstring theory into
correspondence with the facts of nature, will be led to enlarge their
analytic machinery to include not only theta-functions but mock
theta-functions . . . But before this can happen, the purely mathematical
exploration of the mock-modular forms and their mock-symmetries must
be carried a great deal further.”

Freeman Dyson (1987 Ramanujan Centenary Conference)

We will encounter mock modular forms naturally while dealing with
quantum black holes and holography in situations with wall-crossing.
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Quantum Entropy Localization Mock Modularity

Physical Motivation

The counting function for horizon degeneracies for a large class of
black holes in string theory is expected to be modular from the
perspective of holography. Boundary of AdS3 is a conformal torus
with an SL(2,Z) symmetry as global diffeomorphism.

With wall-crossing, there is an apparent loss of modularity! Disaster!!

It is far from clear if and how such a counting function can be
modular. Very hard to analyze this question in general N = 2 case.

The quarter-BPS black holes in N = 4 theories provide the idea set-up to
understand the essential conceptual issues. We develop the required
analytic machinery that provides a complete answer to this question which
leads naturally to the mathematics of mock modular forms.
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Quantum Entropy Localization Mock Modularity

Mock Modular Forms and Quantum Black Holes

A. D., Sameer Murthy, Don Zagier [2012]

A summary of results

Quantum degeneracies of single-centered black holes in N = 4
theories are given by Fourier coefficients of a mock modular form.

Mock modularity is a consequence of wall-crossing in spacetime and
noncompactness of the microscopic SCFT.

This hidden modular symmetry is essential for two reasons

Conceptually, for AdS2 and AdS3 holography.

Practically, for developing a Rademacher type expansion.
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Quantum Entropy Localization Mock Modularity

Meromorphic Jacobi Forms

Recall that the asymptotic counting function of quarter-BPS states in
N = 4 theory is

ψm(τ, z) =
1

A(τ, z)

1

η24(τ)
χm+1(τ, z)

for m = P2/2 with τ and z as chemical potentials for Q2/2 and P · Q.
Now A, which has a double zero is in the denominator. So we have to
figure out how to extract Fourier coefficients taking into account a double
pole. This innocent looking pole is physically relevant for wall-crossing and
is at the heart of the connection to mock modularity.
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Meromorphy, Moduli Dependence, and Wall-crossing

Meromorphy and Moduli Dependence

This is meromorphic with a double pole at z = 0. Degeneracies
depend on the contour.

This is a problem because then the degeneracies are not uniquely
defined. For any given contour they are not duality invariant.
Moreover, they do not have any moduli dependence as is expected.

These two problems solve each other and become features if the
contour is chosen to depend on the moduli appropriately.
Dabholkar, Gaiotto, Nampuri [07], Sen[07], Cheng, Verlinde [07]
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Wall-crossing and Multi-centered black holes

Figure: On the left of the wall there are only single-centered black holes but on
the right of the wall there are both single-centered and multi-centered black holes.
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Contours, Poles, and Walls

Contour depends upon moduli.

Pole-crossing corresponds to wall-crossing.

Residue at the pole gives the jump in degeneracy upon wall-crossing.

How to isolate the degeneracies of single-centered black holes?
Under modular transformation z → z/cτ + d , the contour shifts. As a
result, Fourier coefficients no longer have nice modular properties.
Modular symmetry is lost. How to restore modular symmetry?

A modular form is completely specified by a few invariants—its weight and
first few Fourier coefficients. Without modular symmetry, life is difficult!
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Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 33 / 39



Quantum Entropy Localization Mock Modularity

Contours, Poles, and Walls

Contour depends upon moduli.

Pole-crossing corresponds to wall-crossing.

Residue at the pole gives the jump in degeneracy upon wall-crossing.

How to isolate the degeneracies of single-centered black holes?
Under modular transformation z → z/cτ + d , the contour shifts. As a
result, Fourier coefficients no longer have nice modular properties.
Modular symmetry is lost. How to restore modular symmetry?

A modular form is completely specified by a few invariants—its weight and
first few Fourier coefficients. Without modular symmetry, life is difficult!

Atish Dabholkar (CERN/Paris) Quantum Black Holes November 2012, Munich 33 / 39



Quantum Entropy Localization Mock Modularity

Decomposition Theorem DMZ [12]

There is a unique decomposition of the counting function:

ψm(τ, z) = ψF
m(τ, z) + ψP

m(τ, z) ,

such that

ψP
m(τ, z) has the same pole structure in z as ψm(τ, z):

ψP
m :=

p24(m + 1)

η24(τ)

∑
s∈Z

qms2+sy 2ms+1

(1− qsy)2
,

ψF
m(τ, z) has no poles.

The nontrivial part of the theorem is that both ψF
m and ψP

m admit modular
completions ψ̂F

m and ψ̂P
m respectively.
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Quantum Entropy Localization Mock Modularity

Mock Jacobi Form

Mock modularity and holomorphic anomaly

The completion is a mock Jacobi form (‘mock modular in τ and elliptic in
z ’). It satisfies the ‘anomaly’ equation

τ
3/2
2

∂

∂τ̄
ψ̂F
m(τ, z) =

√
m

8πi

p24(m + 1)

η24(τ)

∑
` mod 2m

ϑm,`(τ) ϑm,`(τ, z) .

Mock modularity and noncompactness

For a compact SCFT, the ellptic genus counts right-moving ground states
and left-moving excitations. Hence is holomorphic. This can fail for a
noncompact SCFT because of a continuum of states.

Troost[10]
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Quantum Entropy Localization Mock Modularity

Physical Interpretation and AdS2 Holography

Both pieces in the decomposition have a natural physical interpretation.

ψP
m is the counting function of multi-centered black holes

ψF
m is the counting function of single-centered black holes

This enables us to cleanly isolate the contribution of single-centered black
holes at the microscopic level.

Fourier coefficients of ψF
m are the degeneracies d(Q,P) of

single-centered black holes that we require for AdS2 holography.

Because ψ̂F
m is modular, one can use the power of modular symmetry

for example to develop Rademacher-like expansion.
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Quantum Entropy Localization Mock Modularity

Mock Modularity and AdS3 Holography

Modular transformations are global diffeomorphisms of boundary
torus. Hence, restoring modular symmetry is essential for holography.

Elliptic transformations are large gauge transformations of the
three-form field which correspond to integer shifts of the axion field
a→ a + b and Q → Q + bP and hence is responsible for spectral flow
symmetry or the elliptic symmetry.

The CFT partition function must be both modular and elliptic. Moreover,
it should not exhibit any wall-crossing because all moduli are fixed to their
attractor values in the near horizon AdS3 geometry of a black string.
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Quantum Entropy Localization Mock Modularity

Physical Interpretation of the Modular Completion

What object can correspond to the indexed partition function of the CFT ?

It cannot possibly be ψm or ψP
m because both have wall-crossings.

It cannot possibly be ψF
m because it is not modular.

We propose that it is the completion ψ̂F
m which is naturally identified with

the generalized elliptic genus of the SCFT dual to a single-centered AdS3

geometry. This microscopic picture is consistent with all symmetries, and
with the macroscopic supergravity analysis of de Boer, Denef, El-Showk,

Messamah, Van den Bleeken [10]. More work is needed to fully understand
its implications, in particular of the holomorphic anomaly.
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Quantum Entropy Localization Mock Modularity

Connection to Number Theory

Our decomposition theorem was partially motivated by the notion of
‘attractor contour’ in black hole physics.

Using our results, the infinite family of meromorphic black hole
counting functions {ψm} and another related family furnish an infinite
list of examples of mock modular forms.

This list contains most known mock modular forms including the
mock theta functions of Ramanujan, the generating function of
Hurwitz-Kronecker class numbers, the mock modular form
conjecturally related to the Mathieu group M24, as well as an infinite
number of new examples.

Ramanujan[20]; Zagier[75]; Eguchi, Ooguri, Tachikawa [10]; Cheng, Duncan,

Harvey [12]
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