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Path and functional integrals

Path and functional integrals are a standard tool in theoretical
physics.
But in most cases not mathematically rigorously defined.

Schrödinger equation:

i~
∂u
∂t

= Hu

where e.g. H = ∆− V =
∑

j
∂2

∂x2
j
− V .
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Feynman’s view on quantum mechanics

Richard
Feynman

(1918-1988)

Solution of Schrödinger equation given by

u(t , x) =

ˆ
R3

K (t , x , y)u0(y) d3y

where

K (t , x , y) =

ˆ
exp

(
i
~

ˆ t

0
L(γ, γ̇)dt

)
Dγ



Does it make sense?

Problem: What does Dγ mean?

Mark Kac (1914-1984)

Formally replace it by t !
Yields diffusion equation

∂u
∂t

= Hu



Heuristic formulas

For operator H = ∆− V consider the Cauchy problem for the
heat equation {

∂u
∂t = Hu
u(x ,0) = u0(x)

Brownian motion⇒ heuristic path integral formula:

u(t , x) =
1
Z

ˆ
Px (t)

exp
(
−1

2
E(γ)−

ˆ t

0
V (γ(s)) ds

)
· u0(γ(t))Dγ.



Problems

u(t , x) =
1
Z

ˆ
Px (t)

exp
(
−1

2
E(γ)−

ˆ t

0
V (γ(s)) ds

)
· u0(γ(t))Dγ.

Problems:
Px (t) is infinite-dimensional and the measure Dγ does not
exist.
Energy E(γ) = 1

2

´ t
0 |γ̇(s)|2ds is defined only for

differentiable paths.
The normalizing factor 1/Z is infinite.

1. Solution: The measure dW = 1
Z exp

(
−1

2E(γ)
)
Dγ does exist.
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Mathematical Description

Brownian path in R3

Wiener measure on the space of
continuous paths

Px (t) :=
{γ ∈ C0([0, t ],Rn) | γ(0) = x}

W[γ(t) ∈ U] =
´

U k(t , x − y) dy ,

where

k(t , z) = (4πt)−n/2 exp(−|z|2/4t)
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Mathematical description

k(t , z) = (4πt)−n/2 exp(−|z|2/4t)

(Gauss distribution)



Feynman-Kac formula

Feynman-Kac Formula:

u(t , x) =

ˆ
Px (t)

exp
(
−
ˆ t

0
V (γ(s)) ds

)
· u0(γ(t)) dW(γ)

Problems with this:
For V = 0 this formula is a tautology.
Kinetic and potential energy are treated differently.
Does not work for the Schrödinger equation.

2. Solution: Finite-dimensional approximation
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Renormalized integrals

Aim: Replace measure theoretic integrals by a more general
concept of integral.

Let J be a directed system, i.e., J is a set equipped with a
relation � such that the following holds:

Reflexivity: T � T
Transitivity: T � S & S � U ⇒ T � U
Antisymmetry: T � S & S � T ⇒ T = S
∀T ,S ∈ J ∃U ∈ J : T � U & S � U
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Renormalized integrals

Definitions

measure space family = family of measure spaces
Ω = {(ΩT , µT )}T ∈J parameterized by J .
measurable function on Ω = family f = {fT }T ∈J of
measurable functions fT : ΩT → X .
f is called integrable if fT is eventually integrable and the
limit exists:  

Ω
f (x)Dx := lim−→

T ∈J

ˆ
ΩT

fT (x) dµT (x)

ffl
Ω f (x)Dx = renormalized integral of f over Ω.

By abuse of notation, write f : Ω→ X and think of f as a
function on the virtual space Ω.



Renormalized integrals, examples

Improper integrals

J = {compact intervals I ⊂ R}, “�” = “⊂”, ΩI = I, µI = dx
For measurable function f : R→ R put fI := f |I . Then

 
Ω

f (x)Dx =

ˆ ∞
−∞

f (x) dx

Improper integrals, renormalized

J = {compact intervals I ⊂ R}, “�” = “⊂”, ΩI = I, µI = dx
length(I)

E.g., for α > −1 and f (x) = (|x |+ 1)α:

 
Ω

(|x |+ 1)αDx =


0, α < 0
1, α = 0
∞, α > 0



Renormalized integrals, examples

Improper integrals

J = {compact intervals I ⊂ R}, “�” = “⊂”, ΩI = I, µI = dx
For measurable function f : R→ R put fI := f |I . Then

 
Ω

f (x)Dx =

ˆ ∞
−∞

f (x) dx

Improper integrals, renormalized

J = {compact intervals I ⊂ R}, “�” = “⊂”, ΩI = I, µI = dx
length(I)

E.g., for α > −1 and f (x) = (|x |+ 1)α:

 
Ω

(|x |+ 1)αDx =


0, α < 0
1, α = 0
∞, α > 0



Renormalized integrals, examples

Cauchy’s Principal Value

J = (0,1), “�” = “≥”, ΩT = [−1,−T ] ∪ [T ,1], µT = dx .
For f : [−1,1]→ R put fT := f |ΩT .

 
Ω

f (x)Dx = lim
T↘0

[ˆ −T

−1
f (x) dx +

ˆ 1

T
f (x) dx

]
= CH

ˆ 1

−1
f (x) dx



Renormalized integrals, examples

Fredholm Determinant

H = separable real Hilbert space,
J = {finite-dim. subspaces H ⊂ H}, “�” = “⊂”, ΩH = H,
µH = π−n/2 dnx where n = dim(H).
Let L = Id + A be a bounded positive self-adjoint operator
where A is of trace class. Then the determinant is defined and
satisfies

det(L) =
∞∏

j=1

(1 + λj)

Then  
Ω

exp(−Lx , x)Dx = det(L)−1/2
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Path integrals on manifolds

Consider partitions P = (0 = s0 < s1 < · · · < sr = 1) of the unit
interval.
The set of partitions P forms a directed system where P � P ′ if
P ′ is a subdivision of P.
Let M be a Riemannian manifold.
A piecewise smooth curve in M is a pair (P, γ) where P is a
partition and γ : [0,1]→ M is a continuous curve with γ|[sj−1,sj ]

smooth.
A geodesic polygon is a piecewise smooth curve (P, γ) if γ(sj)
is not in the cut-locus of γ(sj−1) and γ|[sj−1,sj ] is the unique
shortest geodesic joining its endpoints.
Put

P(P,M)y
x := {(P, γ) | geodesic polygon s.t. γ(0) = x and γ(1) = y}
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Path integrals on manifolds

The map

P(P,M)y
x → M × . . .×M, (P, γ) 7→ (γ(s1), . . . , γ(sr−1))

is injective and surjective up to a null set.
Riemannian volume measure on M × . . .×M induces measure
Dγ on P(P,M)y

x .
Define the renormalization constant

Z (P, t) := t rm/2
r∏

j=1

(4π(sj − sj−1))m/2

where m = dim(M).
We obtain a measure space family

{(P(P,M)y
x ,Z (P,dim(M), t)−1 · Dγ)}P



Heat equation on manifolds

M = compact m-dimensional Riemannian manifold without
boundary
E → M = Hermitian vector bundle
H = ∆E − V = self-adjoint generalized Laplace operator
acting on sections of E . Locally, H has the form

H =
m∑

j,k=1

g jk ∂2

∂x j∂xk + lower order terms.

kH(t , x , y) = heat kernel of H, i.e.,

u(t , x) =

ˆ
M

kH(t , x , y) u0(y) dy

solves {
∂u
∂t = Hu
u(x ,0) = u0(x)



Path integral formula for the heat kernel

Theorem (B., 2011)

kH(t , y , x) =

 
P(M)y

x

exp

[
−E[γ]

2t
+ t

ˆ 1

0

(
1
3

scal(γ(s))− V (γ(s))

)
ds

]
Dγ.

Application: Comparison results (Hess-Schrader-Uhlenbrock
inequality)
Hope: Applicable to Schrödinger equation
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Earlier results

Andersson-Driver (1999)

Path integral formula for solution to heat equation
for scalar operators (not for heat kernel itself)

B.-Pfäffle (2008)

Path integral formula for solution to heat
equation in the present setup (not for heat kernel itself)
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Idea of the proof

Start with tautological path integral formula

kH(t , y , x) =

 
P(M)y

x

Z (P,dim(M), t) K H
t (P, γ) Dγ.

where K H
t (P, γ) = kH(t(sr − sr−1), γ(sr ), γ(sr−1)) ◦ · · · ◦

kH(t(s1 − s0), γ(s1), γ(s0))

Modify integrand in the path integral without changing the
value of the integral.
Start modification using short time heat asymptotics:

kH(t , y , x) ∼ (4πt)−m/2 exp
(
−d(x , y)2

4t

) ∞∑
j=0

aj(x , y)t j
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Gaussian integrals

Quantum field theory: Integrals over spaces of fields (e.g.
functions on a manifold)
Aim: Make ˆ

exp (−S(φ))Dφ

rigorous, where S(φ) = 1
2(Lφ, φ) with L self-adjoint and positive.

Recall that for suitable bounded L:
ˆ

exp (−S(φ))Dφ = det(L)−1/2
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Determinants

Question: What is det(L)?
Zeta function:

ζL(s) :=
∑

λ∈spec(L)

λ−s

det(L) := exp(−ζ ′(0))



Determinant of the Dirac operator

Let D be the Dirac operator on M.
The spectrum of D is unbounded from above and from below.
For simplicity assume that 0 6∈ spec(D).
Then:

det(D) := exp
(

iπ
2

(ζD2(0)− ηD(0))

)
· exp

(
−
ζ ′D2(0)

2

)
where

ηD(s) =
∑

λ∈spec(D)

sgnλ
|λ|s



Determinant of the Dirac operator on Sn

Theorem (Branson 1993, Bär-Schopka 2003)

log det(D2; Sn) =
n−1∑
k=0

(
A(k ,n) · ζ ′R(−k) + B(k ,n) · ζR(−k)

)
+C(n)

det(D; Sn) = exp(iπK (n))
√

det(D2; Sn)

with K (n) = 0, if n is odd.



Determinant of the Dirac operator on Sn

n det(D)

3 0.803354268824629
5 1.090359845142337
7 0.963796369884191
9 1.016473922384390

11 0.992614518464762
13 1.003422630166412
15 0.998408322304586
17 1.000749343263366
19 0.999645452552308
21 1.000168795852563

Conjecture:
limn→∞ det(D; Sn) = 1

Proved by N. M. Møller
(2007)
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