Path Integrals on Curved Spaces

Christian Bär

Institut für Mathematik

Universität Potsdam
MPI für Physik, München
November 19, 2012

Contents

1 Introduction

2 Wiener measure

3 Finite-dimensional approximation

4 Zeta-regularized determinants

Contents

1 Introduction

2 Wiener measure

3 Finite-dimensional approximation

4 Zeta-regularized determinants

Path and functional integrals

Path and functional integrals are a standard tool in theoretical physics.
But in most cases not mathematically rigorously defined.

Schrödinger equation:

where e.g. $H=\Delta-V=\sum_{j} \frac{\partial^{2}}{\partial x_{j}^{2}}-V$.

Path and functional integrals

Path and functional integrals are a standard tool in theoretical physics.
But in most cases not mathematically rigorously defined.

Schrödinger equation:

$$
i \hbar \frac{\partial u}{\partial t}=H u
$$

where e.g. $H=\Delta-V=\sum_{j} \frac{\partial^{2}}{\partial x_{j}^{2}}-V$.

Feynman's view on quantum mechanics

Solution of Schrödinger equation given by

$$
u(t, x)=\int_{\mathbb{R}^{3}} K(t, x, y) u_{0}(y) d^{3} y
$$

where

$$
K(t, x, y)=\int \exp \left(\frac{i}{\hbar} \int_{0}^{t} L(\gamma, \dot{\gamma}) d t\right) \mathcal{D} \gamma
$$

Richard
Feynman
(1918-1988)

Does it make sense?

Problem: What does $\mathcal{D} \gamma$ mean?

Formally replace it by t ! Yields diffusion equation

$$
\frac{\partial u}{\partial t}=H u
$$

Mark Kac (1914-1984)

Heuristic formulas

For operator $H=\Delta-V$ consider the Cauchy problem for the heat equation

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=H u \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Brownian motion \Rightarrow heuristic path integral formula:
$u(t, x)=\frac{1}{Z} \int_{P_{x}(t)} \exp \left(-\frac{1}{2} \mathrm{E}(\gamma)-\int_{0}^{t} V(\gamma(s)) d s\right) \cdot u_{0}(\gamma(t)) \mathcal{D} \gamma$.

Problems

$u(t, x)=\frac{1}{Z} \int_{P_{x}(t)} \exp \left(-\frac{1}{2} \mathrm{E}(\gamma)-\int_{0}^{t} V(\gamma(s)) d s\right) \cdot u_{0}(\gamma(t)) \mathcal{D} \gamma$.
Problems:
■ $P_{x}(t)$ is infinite-dimensional and the measure $\mathcal{D} \gamma$ does not exist.
■ Energy $E(\gamma)=\frac{1}{2} \int_{0}^{t}|\dot{\gamma}(s)|^{2} d s$ is defined only for differentiable paths.
■ The normalizing factor $1 / Z$ is infinite.

1. Solution: The measure $d \mathbb{W}=\frac{1}{Z} \exp \left(-\frac{1}{2} \mathrm{E}(\gamma)\right) \mathcal{D} \gamma$ does exist.

Problems

$$
u(t, x)=\frac{1}{Z} \int_{P_{x}(t)} \exp \left(-\frac{1}{2} \mathrm{E}(\gamma)-\int_{0}^{t} V(\gamma(s)) d s\right) \cdot u_{0}(\gamma(t)) \mathcal{D} \gamma
$$

Problems:
■ $P_{x}(t)$ is infinite-dimensional and the measure $\mathcal{D} \gamma$ does not exist.
■ Energy $E(\gamma)=\frac{1}{2} \int_{0}^{t}|\dot{\gamma}(s)|^{2} d s$ is defined only for differentiable paths.

- The normalizing factor $1 / Z$ is infinite.

1. Solution: The measure $d \mathbb{W}=\frac{1}{Z} \exp \left(-\frac{1}{2} \mathrm{E}(\gamma)\right) \mathcal{D} \gamma$ does exist.

Contents

1 Introduction

2 Wiener measure

3 Finite-dimensional approximation

4 Zeta-regularized determinants

Mathematical Description

Wiener measure on the space of continuous paths

$$
\begin{aligned}
& P_{x}(t):= \\
& \left\{\gamma \in C^{0}\left([0, t], \mathbb{R}^{n}\right) \mid \gamma(0)=x\right\}
\end{aligned}
$$

Brownian path in \mathbb{R}^{3}

$$
U]=\int_{U} k(t, x-y) d y,
$$

Mathematical Description

Wiener measure on the space of continuous paths

$$
\begin{aligned}
& P_{x}(t):= \\
& \left\{\gamma \in C^{0}\left([0, t], \mathbb{R}^{n}\right) \mid \gamma(0)=x\right\}
\end{aligned}
$$

Brownian path in \mathbb{R}^{3}

$$
\begin{gathered}
\mathbb{W}[\gamma(t) \in U]=\int_{U} k(t, x-y) d y \\
\text { where }
\end{gathered}
$$

$$
k(t, z)=(4 \pi t)^{-n / 2} \exp \left(-|z|^{2} / 4 t\right)
$$

Mathematical description

$$
k(t, z)=(4 \pi t)^{-n / 2} \exp \left(-|z|^{2} / 4 t\right)
$$

(Gauss distribution)

Feynman-Kac formula

Feynman-Kac Formula:

$$
u(t, x)=\int_{P_{x}(t)} \exp \left(-\int_{0}^{t} V(\gamma(s)) d s\right) \cdot u_{0}(\gamma(t)) d \mathbb{W}(\gamma)
$$

Problems with this:

- For $V=0$ this formula is a tautology.
- Kinetic and potential energy are treated differently.
\square Does not work for the Schrödinger equation.

2. Solution: Finite-dimensional approximation

Feynman-Kac formula

Feynman-Kac Formula:

$$
u(t, x)=\int_{P_{x}(t)} \exp \left(-\int_{0}^{t} V(\gamma(s)) d s\right) \cdot u_{0}(\gamma(t)) d \mathbb{W}(\gamma)
$$

Problems with this:

- For $V=0$ this formula is a tautology.

■ Kinetic and potential energy are treated differently.
■ Does not work for the Schrödinger equation.
2. Solution: Finite-dimensional approximation

Contents

1 Introduction

2 Wiener measure

3 Finite-dimensional approximation

4 Zeta-regularized determinants

Renormalized integrals

Aim: Replace measure theoretic integrals by a more general concept of integral.

Let \mathcal{J} be a directed system, i.e., \mathcal{J} is a set equipped with a relation \preceq such that the following holds:

- Reflexivity:

■ Transitivity: $\quad \mathcal{T} \preceq \mathcal{S} \& \mathcal{S} \preceq \mathcal{U} \Rightarrow \mathcal{T} \preceq \mathcal{U}$

- Antisymmetry:

Renormalized integrals

Aim: Replace measure theoretic integrals by a more general concept of integral.

Let \mathcal{J} be a directed system, i.e., \mathcal{J} is a set equipped with a relation \preceq such that the following holds:

■ Reflexivity: $\mathcal{T} \preceq \mathcal{T}$
■ Transitivity: $\quad \mathcal{T} \preceq \mathcal{S} \& \mathcal{S} \preceq \mathcal{U} \Rightarrow \mathcal{T} \preceq \mathcal{U}$
■ Antisymmetry: $\quad \mathcal{T} \preceq \mathcal{S} \& \mathcal{S} \preceq \mathcal{T} \Rightarrow \mathcal{T}=\mathcal{S}$
$\square \forall \mathcal{T}, \mathcal{S} \in \mathcal{J} \exists \mathcal{U} \in \mathcal{J}: \quad \mathcal{T} \preceq \mathcal{U} \& \mathcal{S} \preceq \mathcal{U}$

Renormalized integrals

Definitions

- measure space family = family of measure spaces $\Omega=\left\{\left(\Omega_{\mathcal{T}}, \mu_{\mathcal{T}}\right)\right\}_{\mathcal{T} \in \mathcal{J}}$ parameterized by \mathcal{J}.
■ measurable function on $\Omega=$ family $f=\left\{f_{\mathcal{T}}\right\}_{\mathcal{T} \in \mathcal{J}}$ of measurable functions $f_{\mathcal{T}}: \Omega_{\mathcal{T}} \rightarrow X$.
$\square f$ is called integrable if $f_{\mathcal{T}}$ is eventually integrable and the limit exists:

$$
f_{\Omega} f(x) \mathcal{D} x:=\underset{\underset{\mathcal{T} \in \mathcal{J}}{\lim }}{\Omega_{\mathcal{T}}} f_{\mathcal{T}}(x) d \mu \mathcal{T}(x)
$$

- $f_{\Omega} f(x) \mathcal{D} x=$ renormalized integral of f over Ω.

By abuse of notation, write $f: \Omega \rightarrow X$ and think of f as a function on the virtual space Ω.

Renormalized integrals, examples

Improper integrals
$\mathcal{J}=\{$ compact intervals $I \subset \mathbb{R}\}, " \preceq "=" \subset ", \Omega_{I}=I, \mu_{I}=d x$
For measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ put $f_{l}:=\left.f\right|_{I}$. Then

$$
f_{\Omega} f(x) \mathcal{D} x=\int_{-\infty}^{\infty} f(x) d x
$$

Improper integrals, renormalized

$\mathcal{I}=\{$ compact intervals
length(l)
E.g., for $\alpha>-1$ and $f(x)=(|x|+1)^{\alpha}$:

Renormalized integrals, examples

Improper integrals

$\mathcal{J}=\{$ compact intervals $I \subset \mathbb{R}\}$, " $\preceq "=" \subset ", \Omega_{I}=I, \mu_{I}=d x$ For measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$ put $f_{l}:=\left.f\right|_{/}$. Then

$$
f_{\Omega} f(x) \mathcal{D} x=\int_{-\infty}^{\infty} f(x) d x
$$

Improper integrals, renormalized
$\mathcal{J}=\{$ compact intervals $I \subset \mathbb{R}\}, " \preceq "=" \subset ", \Omega_{I}=I, \mu_{I}=\frac{d x}{\text { length }(I)}$ E.g., for $\alpha>-1$ and $f(x)=(|x|+1)^{\alpha}$:

$$
f_{\Omega}(|x|+1)^{\alpha} \mathcal{D} x= \begin{cases}0, & \alpha<0 \\ 1, & \alpha=0 \\ \infty, & \alpha>0\end{cases}
$$

Renormalized integrals, examples

Cauchy's Principal Value

$\mathcal{J}=(0,1), " \preceq "=" \geq ", \Omega_{T}=[-1,-T] \cup[T, 1], \mu_{T}=d x$.
For $f:[-1,1] \rightarrow \mathbb{R}$ put $f_{T}:=\left.f\right|_{\Omega_{T}}$.

$$
f_{\Omega} f(x) \mathcal{D} x=\lim _{T \searrow 0}\left[\int_{-1}^{-T} f(x) d x+\int_{T}^{1} f(x) d x\right]=\mathrm{CH} \int_{-1}^{1} f(x) d x
$$

Renormalized integrals, examples

Fredholm Determinant

$\mathcal{H}=$ separable real Hilbert space,
$\mathcal{J}=\{$ finite-dim. subspaces $H \subset \mathcal{H}\}$, " $\preceq "=" \subset ", \Omega_{H}=H$, $\mu_{H}=\pi^{-n / 2} d^{n} x$ where $n=\operatorname{dim}(H)$.
Let $L=\mathrm{Id}+A$ be a bounded positive self-adjoint operator where A is of trace class. Then the determinant is defined and satisfies

Then

Renormalized integrals, examples

Fredholm Determinant

$\mathcal{H}=$ separable real Hilbert space,
$\mathcal{J}=\{$ finite-dim. subspaces $H \subset \mathcal{H}\}, " \preceq "=" \subset ", \Omega_{H}=H$,
$\mu_{H}=\pi^{-n / 2} d^{n} x$ where $n=\operatorname{dim}(H)$.
Let $L=\mathrm{Id}+A$ be a bounded positive self-adjoint operator where A is of trace class. Then the determinant is defined and satisfies

$$
\operatorname{det}(L)=\prod_{j=1}^{\infty}\left(1+\lambda_{j}\right)
$$

Then

Renormalized integrals, examples

Fredholm Determinant

$\mathcal{H}=$ separable real Hilbert space,
$\mathcal{J}=\{$ finite-dim. subspaces $H \subset \mathcal{H}\}, " \preceq "=" \subset ", \Omega_{H}=H$,
$\mu_{H}=\pi^{-n / 2} d^{n} x$ where $n=\operatorname{dim}(H)$.
Let $L=\mathrm{Id}+A$ be a bounded positive self-adjoint operator where A is of trace class. Then the determinant is defined and satisfies

$$
\operatorname{det}(L)=\prod_{j=1}^{\infty}\left(1+\lambda_{j}\right)
$$

Then

$$
f_{\Omega} \exp (-L x, x) \mathcal{D} x=\operatorname{det}(L)^{-1 / 2}
$$

Path integrals on manifolds

Consider partitions $\mathcal{P}=\left(0=s_{0}<s_{1}<\cdots<s_{r}=1\right)$ of the unit interval.
The set of partitions \mathcal{P} forms a directed system where $\mathcal{P} \preceq \mathcal{P}^{\prime}$ if \mathcal{P}^{\prime} is a subdivision of \mathcal{P}.
Let M be a Riemannian manifold.
A piecewise smooth curve in M is a pair (\mathcal{P}, γ) where \mathcal{P} is a partition and $\gamma:[0,1] \rightarrow M$ is a continuous curve with $\left.\gamma\right|_{\left[s_{j-1}, s_{j}\right]}$ smooth.
A geodesic polygon is a piecewise smooth curve ($\mathcal{P}, \gamma)$ if $\gamma\left(s_{j}\right)$ is not in the cut-locus of $\gamma\left(s_{j-1}\right)$ and $\left.\gamma\right|_{\left[s_{j-1}, s_{j}\right]}$ is the unique shortest geodesic joining its endpoints. Put

Path integrals on manifolds

Consider partitions $\mathcal{P}=\left(0=s_{0}<s_{1}<\cdots<s_{r}=1\right)$ of the unit interval.
The set of partitions \mathcal{P} forms a directed system where $\mathcal{P} \preceq \mathcal{P}^{\prime}$ if \mathcal{P}^{\prime} is a subdivision of \mathcal{P}.
Let M be a Riemannian manifold.
A piecewise smooth curve in M is a pair (\mathcal{P}, γ) where \mathcal{P} is a partition and $\gamma:[0,1] \rightarrow M$ is a continuous curve with $\left.\gamma\right|_{\left[s_{j-1}, s_{j}\right]}$ smooth.
A geodesic polygon is a piecewise smooth curve ($\mathcal{P}, \gamma)$ if $\gamma\left(S_{j}\right)$
is not in the cut-locus of $\gamma\left(s_{j-1}\right)$ and $\left.\gamma\right|_{\left[s_{j-1}, s_{j}\right]}$ is the unique
shortest geodesic joining its endpoints.
Put

$\mathfrak{P}(\mathcal{P}$

Path integrals on manifolds

Consider partitions $\mathcal{P}=\left(0=s_{0}<s_{1}<\cdots<s_{r}=1\right)$ of the unit interval.
The set of partitions \mathcal{P} forms a directed system where $\mathcal{P} \preceq \mathcal{P}^{\prime}$ if \mathcal{P}^{\prime} is a subdivision of \mathcal{P}.
Let M be a Riemannian manifold.
A piecewise smooth curve in M is a pair (\mathcal{P}, γ) where \mathcal{P} is a partition and $\gamma:[0,1] \rightarrow M$ is a continuous curve with $\left.\gamma\right|_{\left[s_{j-1}, s_{j}\right]}$ smooth.
A geodesic polygon is a piecewise smooth curve ($\mathcal{P}, \gamma)$ if $\gamma\left(s_{j}\right)$ is not in the cut-locus of $\gamma\left(s_{j-1}\right)$ and $\left.\gamma\right|_{\left[s_{j-1}, s_{j}\right]}$ is the unique shortest geodesic joining its endpoints.
Put
$\mathfrak{P}(\mathcal{P}, M)_{x}^{y}:=\{(\mathcal{P}, \gamma) \mid$ geodesic polygon s.t. $\gamma(0)=x$ and $\gamma(1)=y\}$

Path integrals on manifolds

The map

$$
\mathfrak{P}(\mathcal{P}, M)_{x}^{y} \rightarrow M \times \ldots \times M, \quad(\mathcal{P}, \gamma) \mapsto\left(\gamma\left(s_{1}\right), \ldots, \gamma\left(s_{r-1}\right)\right)
$$

is injective and surjective up to a null set.
Riemannian volume measure on $M \times \ldots \times M$ induces measure
$\mathcal{D} \gamma$ on $\mathfrak{P}(\mathcal{P}, M)_{x}^{y}$.
Define the renormalization constant

$$
Z(\mathcal{P}, t):=t^{r m / 2} \prod_{j=1}^{r}\left(4 \pi\left(s_{j}-s_{j-1}\right)\right)^{m / 2}
$$

where $m=\operatorname{dim}(M)$.
We obtain a measure space family

$$
\left\{\left(\mathfrak{P}(\mathcal{P}, M)_{X}^{y}, Z(\mathcal{P}, \operatorname{dim}(M), t)^{-1} \cdot \mathcal{D} \gamma\right)\right\}_{\mathcal{P}}
$$

Heat equation on manifolds

■ $M=$ compact m-dimensional Riemannian manifold without boundary
■ $E \rightarrow M=$ Hermitian vector bundle
■ $H=\Delta^{E}-V=$ self-adjoint generalized Laplace operator acting on sections of E. Locally, H has the form

$$
H=\sum_{j, k=1}^{m} g^{j k} \frac{\partial^{2}}{\partial x^{j} \partial x^{k}}+\text { lower order terms }
$$

■ $k^{H}(t, x, y)=$ heat kernel of H, i.e.,

$$
u(t, x)=\int_{M} k^{H}(t, x, y) u_{0}(y) d y
$$

solves

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=H u \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Path integral formula for the heat kernel

Theorem (B., 2011)

$$
k^{H}(t, y, x)=
$$

$$
f_{\mathfrak{P}(M)_{x}^{y}} \exp \left[-\frac{\mathrm{E}[\gamma]}{2 t}+t \int_{0}^{1}\left(\frac{1}{3} \operatorname{scal}(\gamma(s))-V(\gamma(s))\right) d s\right] \mathcal{D} \gamma
$$

Application: Comparison results (Hess-Schrader-Uhlenbrock inequality)
Hope: Applicable to Schrödinger equation

Path integral formula for the heat kernel

Theorem (B., 2011)

$$
\begin{gathered}
k^{H}(t, y, x)= \\
f_{\mathfrak{P}(M)_{x}^{y}} \exp \left[-\frac{E[\gamma]}{2 t}+t \int_{0}^{1}\left(\frac{1}{3} \operatorname{scal}(\gamma(s))-V(\gamma(s))\right) d s\right] \mathcal{D} \gamma
\end{gathered}
$$

Application: Comparison results (Hess-Schrader-Uhlenbrock inequality)
Hope: Applicable to Schrödinger equation

Earlier results

Andersson-Driver (1999)

Path integral formula for solution to heat equation for scalar operators (not for heat kernel itself)

B.-Pfafile (2008)

Path integral formula for solution to heat equation in the present setup (not for heat kernel itself)

Earlier results

Andersson-Driver (1999)

Path integral formula for solution to heat equation for scalar operators (not for heat kernel itself)

B.-Pfäffle (2008)

Path integral formula for solution to heat equation in the present setup (not for heat kernel itself)

Idea of the proof

■ Start with tautological path integral formula

$$
k^{H}(t, y, x)=f_{\mathfrak{P}(M)_{x}^{y}} Z(\mathcal{P}, \operatorname{dim}(M), t) K_{t}^{H}(\mathcal{P}, \gamma) \mathcal{D} \gamma
$$

where $K_{t}^{H}(\mathcal{P}, \gamma)=k^{H}\left(t\left(s_{r}-s_{r-1}\right), \gamma\left(s_{r}\right), \gamma\left(s_{r-1}\right)\right) \circ \cdots \circ$ $k^{H}\left(t\left(s_{1}-s_{0}\right), \gamma\left(s_{1}\right), \gamma\left(s_{0}\right)\right)$

- Modify integrand in the path integral without changing the value of the integral.
■ Start modification using short time heat asymptotics:

Idea of the proof

■ Start with tautological path integral formula

$$
k^{H}(t, y, x)=f_{\mathfrak{P}(M)_{x}^{y}} Z(\mathcal{P}, \operatorname{dim}(M), t) K_{t}^{H}(\mathcal{P}, \gamma) \mathcal{D} \gamma
$$

where $K_{t}^{H}(\mathcal{P}, \gamma)=k^{H}\left(t\left(s_{r}-s_{r-1}\right), \gamma\left(s_{r}\right), \gamma\left(s_{r-1}\right)\right) \circ \cdots \circ$ $k^{H}\left(t\left(s_{1}-s_{0}\right), \gamma\left(s_{1}\right), \gamma\left(s_{0}\right)\right)$
■ Modify integrand in the path integral without changing the value of the integral.

- Start modification using short time heat asymptotics:

Idea of the proof

■ Start with tautological path integral formula

$$
k^{H}(t, y, x)=f_{\mathfrak{P}(M)_{x}^{y}} Z(\mathcal{P}, \operatorname{dim}(M), t) K_{t}^{H}(\mathcal{P}, \gamma) \mathcal{D} \gamma
$$

where $K_{t}^{H}(\mathcal{P}, \gamma)=k^{H}\left(t\left(s_{r}-s_{r-1}\right), \gamma\left(s_{r}\right), \gamma\left(s_{r-1}\right)\right) \circ \cdots \circ$ $k^{H}\left(t\left(s_{1}-s_{0}\right), \gamma\left(s_{1}\right), \gamma\left(s_{0}\right)\right)$
■ Modify integrand in the path integral without changing the value of the integral.
$■$ Start modification using short time heat asymptotics:

$$
k^{H}(t, y, x) \sim(4 \pi t)^{-m / 2} \exp \left(-\frac{d(x, y)^{2}}{4 t}\right) \sum_{j=0}^{\infty} a_{j}(x, y) t^{j}
$$

Contents

1 Introduction

2 Wiener measure

3 Finite-dimensional approximation

4 Zeta-regularized determinants

Gaussian integrals

Quantum field theory: Integrals over spaces of fields (e.g. functions on a manifold)
Aim: Make

$$
\int \exp (-S(\phi)) \mathcal{D} \phi
$$

rigorous, where $S(\phi)=\frac{1}{2}(L \phi, \phi)$ with L self-adjoint and positive.
Recall that for suitable bounded L :

Gaussian integrals

Quantum field theory: Integrals over spaces of fields (e.g. functions on a manifold)
Aim: Make

$$
\int \exp (-S(\phi)) \mathcal{D} \phi
$$

rigorous, where $S(\phi)=\frac{1}{2}(L \phi, \phi)$ with L self-adjoint and positive. Recall that for suitable bounded L :

$$
\int \exp (-S(\phi)) \mathcal{D} \phi=\operatorname{det}(L)^{-1 / 2}
$$

Determinants

Question: What is $\operatorname{det}(L)$?
Zeta function:

$$
\begin{aligned}
& \zeta_{L}(s):=\sum_{\lambda \in \operatorname{spec}(L)} \lambda^{-s} \\
& \operatorname{det}(L):=\exp \left(-\zeta^{\prime}(0)\right)
\end{aligned}
$$

Determinant of the Dirac operator

Let D be the Dirac operator on M.
The spectrum of D is unbounded from above and from below.
For simplicity assume that $0 \notin \operatorname{spec}(D)$.
Then:

$$
\operatorname{det}(D):=\exp \left(\frac{i \pi}{2}\left(\zeta_{D^{2}}(0)-\eta_{D}(0)\right)\right) \cdot \exp \left(-\frac{\zeta_{D^{2}}^{\prime}(0)}{2}\right)
$$

where

$$
\eta_{D}(s)=\sum_{\lambda \in \operatorname{spec}(D)} \frac{\operatorname{sgn} \lambda}{|\lambda|^{s}}
$$

Determinant of the Dirac operator on S^{n}

Theorem (Branson 1993, Bär-Schopka 2003)
$\log \operatorname{det}\left(D^{2} ; S^{n}\right)=\sum_{k=0}^{n-1}\left(A(k, n) \cdot \zeta_{R}^{\prime}(-k)+B(k, n) \cdot \zeta_{R}(-k)\right)+C(n)$

$$
\operatorname{det}\left(D ; S^{n}\right)=\exp (i \pi K(n)) \sqrt{\operatorname{det}\left(D^{2} ; S^{n}\right)}
$$

with $K(n)=0$, if n is odd.

Determinant of the Dirac operator on S^{n}

n	$\operatorname{det}(D)$
3	0.803354268824629
5	1.090359845142337
7	0.963796369884191
9	1.016473922384390
11	0.992614518464762
13	1.003422630166412
15	0.998408322304586
17	1.000749343263366
19	0.999645452552308
21	1.000168795852563

Determinant of the Dirac operator on S^{n}

n	$\operatorname{det}(D)$		
3	0.803354268824629		
5	1.090359845142337		Conjecture:
7	0.9639636984191		$\lim _{n \rightarrow \infty} \operatorname{det}\left(D ; S^{n}\right)=1$
9	1.016473922384390		
11	0.99261451864762		Proved by N. M. Møller
13	1.003422630166412		
15	0.998408322304586		
17	1.000749343263366		
19	0.999645452552308		
21	1.000168795852563		

