

David Mateos ICREA & University of Barcelona

The QCD challenge

• QCD remains a challenge after 36 years!

The QCD challenge

- QCD remains a challenge after 36 years!
- No analytic and truly systematic methods.
- Lattice is good for static properties, but not for real-time physics...
- ... and for a theorist it is a black box.

The QCD challenge

- A string reformulation might help -- topic of this talk.
- Not exhaustive, but hopefully clear picture.
- I apologize in advance for my personal biasses ...
- ... and for possible omissions of relevant references.

Focus on the dynamics of quarks and mesons:

- Responsible for almost all we know about QCD phenomenologically.
- Great progress on the string side in recent years.
- Personal bias.
- It is what Michael asked me to do.

The gauge/string duality

• Large-N_c expansion: $g_s = \frac{1}{N_c}$ + • • • • 't Hooft '74

• First concrete example:

 $\mathcal{N} = 4 \text{ SYM} \iff \text{IIB on } AdS_5 \times S^5$

$$g_s = \frac{1}{N_c}$$
, $R^4 = \lambda \ell_s^4$
 $\lambda \equiv g_{\rm YM}^2 N_c$

Solvable string limit: N_c → ∞, λ → ∞
 Framework for non-perturbative gauge theory physics!

Why have we not solved QCD? N=4 SYM $\Lambda_{\rm QCD} \sim M \exp\left(-\frac{\#}{g_{\rm YM}^2(M)N_{\rm c}}\right)$ $g_{\rm YM}^2(M)N_{\rm c}\ll 1$ Decoupling: E $g_{\rm YM}^2(M)N_{\rm c}\gg 1$ Supergravity: -AQCD

Therefore:

• Certain quantitative observables (eg. T=0 spectrum) will require going beyond supergravity.

• However, certain predictions may be universal enough to apply in certain regimes.

Good example

• Universal ratio: $\frac{\eta}{s} = \frac{1}{4\pi}$

Policastro, Son & Starinets '01 Kovtun, Son & Starinets '03

- Same for all non-Abelian plasmas with gravity dual in the limit $N_c \to \infty, \lambda \to \infty$:
 - Theories in different dimensions.
 - With or without fundamental matter.
 - With or without chemical potential, etc.

• How about QCD just above deconfinement?

Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

Plan for the rest of the talk: As in the QCD phase diagram

Concluding thoughts

The deconfined phase.

Exploit two universal properties

Deconfined plasma

Witten '98

Universal ratio:

 $\underline{\eta}$ _ _ 1 4π S

Policastro, Son & Starinets '01 Kovtun, Son & Starinets '03

BH

(Gluons are deconfined in both phases!)

Babington, Erdmenger, Guralnik & Kirsch '03 Kruczenski, D.M., Myers & Winters '03 Kirsch '04

D.M., Myers & Thomson '06

• Discrete set of mesons with mass gap:

$$M_{
m mes} \sim rac{M_{
m q}}{\sqrt{\lambda}} \sim T_{
m fun}$$

- Massive quarks.
- Heavy mesons survive deconfinement!

• No quasi-particle excitations!

D.M., Myers & Thomson '06 Hoyos-Badajoz, Landsteiner & Montero '06

• Will illustrate this by computing a spectral function of electromagnetic currents, related to photon production:

$$\langle J_{\mu}^{\rm EM} J_{\mu}^{\rm EM} \rangle$$

D.M., Patiño-Jaidar '07

• Heavy mesons survive deconfinement is in good agreement with lattice QCD, eg. for J/Ψ:

Lattice: $T_{\text{fun}} \simeq (317 - 403) \text{ MeV}$

Gravity: $T_{\rm fun} \simeq (371 - 712) \,\,{\rm MeV}$

- Mesons absolutely stable at $N_c \to \infty$, $\lambda \to \infty$, but acquire widths away from this limit.
- Finite coupling: String worldsheet instantons.

Faulkner & Liu '08

 $\Gamma \sim e^{-\sqrt{\lambda}} \sim e^{-M_{\rm q}/T}$

• Finite N: Hawking radiation.

 $\Gamma \sim 1/N_{\rm c}^2$

Spectral functions, quasiparticles and photon/dilepton production.

• Interesting because QGP is optically thin → Photons carry valuable information.

- Need to calculate: $N_{\gamma} \propto \eta^{\mu\nu} \chi_{\mu\nu}$, $\chi_{\mu\nu} \sim \text{Im} \langle J_{\mu}^{\text{EM}} J_{\nu}^{\text{EM}} \rangle$
- Holographic results for massless matter:

Caron-Huot, Kovtun, Moore, Starinets & Yaffe '06 Parnachev & Sahakian '06

Spectral functions, quasiparticles and photon/dilepton production.

• Spectral function for Minkowski phase:

 $\chi = \sum$ delta functions

Black hole embedding

Spectral function for BH

Maximum M_q

Peaks at null momentum!

 $\omega = k^0/2\pi T$

Dispersion relation for mesons

D.M., Myers & Thomson '07 Ejaz, Faulkner, Liu, Rajagopal & Wiedemann '07

Peaks at null momentum!

 $\omega = k^0/2\pi T$

Dispersion relation for mesons

D.M., Myers & Thomson '07 Ejaz, Faulkner, Liu, Rajagopal & Wiedemann '07

Limiting velocity = Local speed of light at the tip

Dispersion relation for mesons

D.M., Myers & Thomson '07 Ejaz, Faulkner, Liu, Rajagopal & Wiedemann '07

Implications for HIC

Casalderey-Solana, D.M. '08

• Simple model yields, for LHC energies:

Quadratically sensitive to cc̄ cross-section
not observable at RHIC.

Jet quenching/energy loss

Herzog, Karch, Kovtun, Kozcaz & Yaffe 'o6 Gubser 'o6 Liu, Rajagopal & Wiedemann 'o6

Friess, Gubser & Michalogiorgakis '06 Friess, Gubser, Michalogiorgakis & Pufu '06 Gubser & Pufu '07 Gubser, Pufu & Yarom '07 Yarom '07 Chessler & Yaffe '07

A new mechanism for quark energy loss

Casalderey-Solana, Fernandez & D.M. (to appear)

Boundary

A new mechanism for quark energy loss

Casalderey-Solana, Fernandez & D.M. (to appear)

Boundary

Expanding plasmas

Janik & Peschanski '05 Janik & Peschanski '06 Kajantie & Tahkokallio '06 Janik '06 Sin, Nakamura & Kim '06 Nakamura & Sin '06 Friess, Gubser, Michalogiorgakis & Pufu '06 Heller & Janik '07 Benicasa, Buchel, Heller & Janik '07 Kovchegov & Taliotis '07 Bhattacharyya, Hubeny, Minwalla & Rangamani '07 Buchel '08 Buchel & Paulos '08 Heller, Surowka, Loganayagam, Spalinski & Vazquez '08 Kinoshita, Mukohyama, Nakamura & Oda '09 Figueras, Hubeny, Rangamani & Ross '09 Chesler & Yaffe '09 Beuf, Heller, Janik & Peschanski '09

• More work on meson dynamics needed.

Grosse, Janik & Surówka '07

Mesons in external E&M fields

Filev, Johnson, Rashkov & Viswanathan ' 07 Erdmenger, Meyer & Shock '07 Albash, Filev, Johnson & Kundu '07 Karch & O'Bannon '07 Johnson & Kundu '08 Jensen, Karch & Price '08 Bergman, Lifschytz & Lippert '08 Rebhan, Schmitt & Stricker '09 Filev, Johnson & Shock '09 Johnson & Kundu '09

The vacuum.

Two fundamental properties: I. Confinement

• Simplest model: D4-branes on a circle.

Witten '98

Two fundamental properties: II. Non-Abelian $S\chi SB$ sat

Sakai & Sugimoto '04

Two fundamental properties: II. Non-Abelian $S\chi SB$ sat

Sakai & Sugimoto '04

 $SU(N_{\rm f})_L \times SU(N_{\rm f})_R \to SU(N_{\rm f})_V$

Comments

- Check: Spectrum contains $N_{\rm f}^2 1$ massless pions.
- Allows separation of confinement and chiral symmetry scales:

 $\Lambda_{\rm QCD} \sim M_{\rm glueball} \sim M_{\rm KK} \sim 1/R$

 $\langle \bar{\psi}\psi \rangle \sim M_{\rm meson} \sim 1/L$

• Can be seen by turning on temperature:

Aharony, Sonnenschein & Yankielowicz '06 Parnachev & Sahakyan '06

 $\begin{array}{c} \text{Deconfinement} \\ \text{at} \ T_c \end{array}$

Chiral symmetry restoration at T_{fun}

• "Verified" on the lattice:

Separating the scales of confinement and chiral-symmetry breaking in lattice QCD with fundamental quarks

D. K. Sinclair

HEP Division and Joint Theory Institute, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

Abstract

Suggested holographic duals of QCD, based on AdS/CFT duality, predict that one should be able to vary the scales of colour confinement and chiral-symmetry breaking independently. Furthermore they suggest that such independent variation of scales can be achieved by the inclusion of extra 4-fermion interactions in QCD. We simulate lattice QCD with such extra 4-fermion terms at finite temperatures and show that for strong enough 4-fermion couplings the deconfinement transition occurs at a lower temperature than the chiral-symmetry restoration transition. Moreover the separation of these transitions depends on the size of the 4-fermion coupling, confirming the predictions from the proposed holographic dual of QCD.

• Quark masses require non-local operators:

Aharony & Kutasov '08 McNees, Myers & Sinha '08

• Alternatively: Tachyon condensation.

Casero, Kiritsis & Paredes '07 Bergman, Seki & Sonnenschein '07 Dhar & Nag '07 Dhar & Nag '08

Recent application: N-N force

Kim & Zahed '09 Hashimoto, Sakai & Sugimoto '09 Kim, Lee & Yi '09

Remarks on finite chemical potential.

General remarks

• The good:

- Very hard on the lattice.
- Very easy in the string description.
- The bad:
 - Most models have scalars (eg. D3/D7)

Nakamura, Seo, Sin & Yogendran '06 Kobayashi, D.M., Matsuura, Myers & Thomson '06 Karch & O' Bannon '07

- Fortunately, S&S does not.

Kim, Sin & Zahed '06 Horigome &Tanii '06 Sin '07 Yamada '07 Bergman, Lifschytz & Lippert '07

- Very easy only at large $N_{\rm c}$, where phase diagram is very different !
- However, see CFL phase in Chen, Hashimoto & Matsuura (to appear)

Cautionary word about (ignoring) stringy effects

Concluding thoughts

Is SUGRA good or bad?

Corrections are $\mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{M}\right)$.

N=4 SYM

 $-\Lambda_{QCD}$

E

Within SUGRA approximation this is $\sim \mathcal{O}(1)$.

Pessimist: "This is a disaster!".

Optimist: "This gets the order of magnitude right!".

Eg.: Is $\frac{\eta}{s} = \frac{1}{4\pi}$ the biggest success or a disaster?

Thank you.