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The QCD challenge

• QCD remains a challenge after 36 years!



The QCD challenge

• QCD remains a challenge after 36 years!

• No analytic and truly systematic methods.

• Lattice is good for static properties, but 
not for real-time physics...

• ... and for a theorist it is a black box.



• A string reformulation might help -- topic of this talk.

• Not exhaustive, but hopefully clear picture.

The QCD challenge

• I apologize in advance for my personal biasses ...

• ... and for possible omissions of relevant references.



Focus on the dynamics of quarks and mesons:

• Responsible for almost all we know about QCD 
phenomenologically.

• Great progress on the string side in recent years.

• Personal bias.

• It is what Michael asked me to do.



Maldacena ‘97• First concrete example:
Universality and Scaling in AdS/CFT with Flavour
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‘t Hooft ‘74

The gauge/string duality

• Solvable string limit:
 Framework for non-perturbative gauge theory physics!
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Why have we not solved QCD?

E
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M

ΛQCD

Universality and Scaling in AdS/CFT with Flavour
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Decoupling:     

Universality and Scaling in AdS/CFT with Flavour
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      Supergravity:



Therefore:

• Certain quantitative observables (eg. T=0 spectrum) 
will require going beyond supergravity.

• However, certain predictions may be universal 
enough to apply in certain regimes. 



Good example

• How about QCD just above deconfinement? 

• Universal ratio: Policastro, Son & Starinets ’01
Kovtun, Son & Starinets ‘03
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• Same for all non-Abelian plasmas with gravity dual 
in the limit                            :  

- Theories in different dimensions. 
- With or without fundamental matter.
- With or without chemical potential, etc.
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Animation by Jeffery Mitchell (Brookhaven National Laboratory). Simulation by the UrQMD Collaboration

 Results indicate strong coupling and                 .
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Plan for the rest of the talk:
As in the QCD phase diagram
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Focus on deconfined 
phase at                          .

• Greatest impact from string theory              
(eg. viscosity/entropy ratio).

• Experimentally studied in HIC.

More briefly on the 
vacuum: T = 0 , µB = 0 (1)
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• Obvious importance. 

SχSB
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Remarks on 

Concluding thoughts
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Exploit two universal properties

BHDeconfined plasma
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).

TD7

GN

∼
λNf

Nc

(1)

First order phase
transition at Tfun

O
(

Nf

Nc

)

(2)

gij (3)

η ∼
δ2SD7

δg2
ij

(4)

GR

µν ∼
δ2SD7

δAµδAν
(5)

η

s
∼

1

4π
(6)

Nc → ∞ , λ → ∞ (7)

Tdec = 175 MeV (8)

k0 = 1 GeV (9)

Mmes (10)

0Mev (11)

Mπ(140 MeV) (12)

1

(Gluons are deconfined in both phases!)

Babington, Erdmenger, Guralnik & Kirsch ’03
Kruczenski, D.M., Myers & Winters ‘03

Kirsch ‘04

D.M., Myers & Thomson ’06

Phase transitions for mesons
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• Discrete set of mesons with mass gap:

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).

Mmes ∼
Mq√

λ
∼ Tfun (1)

m = 0 m = 1.3 (2)

m =
2Mq√

λT
(3)

ω = 0 → σ =
e2

4
lim
k0→0

1

k0
χµ

µ(k
0 = |k|) (4)

ω = 4.8 (5)

χ/ω ∼ ω−1/3 (6)

Mq = 0 → AdS5 × S3 (7)

Mthermal ∼
√

λT % Mq (8)

χ ∼
∑

n

cn δ(p2 + m2
n) , m2

n > 0 (9)

η′ (10)

η

s
=

1

4π
(11)

M2 = −
Mq〈ψ̄ψ〉

f 2
π

(12)

SU(2)L × U(1)Y → U(1)EM (13)

W±, Z (14)

1

•  Massive quarks.

•  Heavy mesons survive deconfinement!

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).
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Phase transitions for mesons
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• No quasi-particle excitations!

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).
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Nc → ∞ , λ → ∞ (7)
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Mπ(140 MeV) (12)

1

Hoyos-Badajoz, Landsteiner & Montero ‘06
D.M., Myers & Thomson ’06

• Will illustrate this by computing a spectral function of 
electromagnetic currents, related to photon production:

Nc D4

Nf D8

Nf D̄8

SU(Nf)L × SU(Nf)R → SU(Nf)V (1)

−→ SU(Nf)V (2)

Check: Spectrum contains N2

f
− 1 massless pions.

ΛQCD ∼ Mglueball ∼ MKK ∼ 1/R (3)

〈ψ̄ψ〉 ∼ Mmeson ∼ 1/L (4)

Tc (5)

Tfun (6)

O ∼ ψ†
L P ei

R

A ψR (7)

〈JEM

µ JEM

µ 〉 (8)

1

D.M., Patiño-Jaidar  ‘07
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Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of eq.

(2.6). u and d quarks, s quarks and c quarks: = Mπ(140 MeV), Mφ(1020 MeV), MJ/ψ(3096 MeV).
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Nc → ∞ , λ → ∞ (7)

Tdec = 175 MeV (8)

k0 = 1 GeV (9)
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Mπ(140 MeV) (12)

1

•  Heavy mesons survive deconfinement is in good agreement with 
lattice QCD, eg. for J/Ψ:

Lattice:

〈q̄q〉 ∼ eik·x (37)

Tfun $ (371 − 712) MeV (38)

Tfun $ (317 − 403) MeV (39)

gs =
1
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Gravity:

〈q̄q〉 ∼ eik·x (37)
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Phase transitions for mesons



•  Mesons absolutely stable at                              , but acquire widths away 
from this limit.

Nc →∞ , λ→∞ (1)

O
(

ΛQCD

M

)
(2)

∼ O(1) (3)

R4 = λ "4
s , λ = g2

YMNc (4)

Sstrong/Sfree = 3/4

Sstrong/Sfree $ 0.8

J/ψ, Υ, ...

ω = |%k|

v < 1 (5)

Tfun(v) = (1− v2)1/4 Tfun (6)

η

s
=

1

4π
(7)

η

s
= (0− 5)× 1

4π
(8)

T/Mmes (9)

n∗
B

nB

Nf

√
λT 3

(10)

JB
µ = JEM

µ (11)

Nf/Nc (12)

GNTD7 ∼
λNf

Nc

(13)

1

2

with dΩ2
3 the metric for a three-sphere S3. The string

coupling gs is related to the Yang-Mills coupling gY M by
gs = 4πg2

Y M and the curvature radius R is related to the

’t Hooft coupling λ = g2
Y MNc by R2

α′ =
√

λ. The per-
turbative gs and α′ expansions in the bulk string theory
are related to the 1/Nc and 1√

λ
expansions in the Yang-

Mills theory respectively. The temperature T of the YM
theory is given by the Hawking temperature of the black
hole, T = r0

πR2 . Adding Nf fundamental “quarks” can
be described in the dual string theory by adding Nf D7-
branes in (1) [6]. A fundamental “quark” in the YM
theory can be described by an open string with one end
on the D7-branes and the other end on the black hole.
Open strings with both ends on the D7-branes can be
considered as “bound states” of a quark and antiquark,
thus describing meson-type excitations in the YM theory.

rm

r0!’

rm

"

"

S3

! r

!

r(  )

L

0r

FIG. 1: An embedding of the D7 brane (green) in the
AdS5 × S5 black hole geometry for T < Tdiss which lies en-
tirely outside the black hole. Inset: the Euclidean r− τ plane
at θ = 0 showing a world-sheet instanton (red) connecting the
tip of D7 brane r = rm to the horizon at the center of the
disk r = r0.

We now briefly outline the standard procedure for ob-
taining the meson spectrum [9]. We will take Nf = 1,
Nc → ∞, and λ large but finite throughout the paper.
The D7-brane can be chosen to lie along the directions
ξα = (t, %x,Ω3, θ) and using the symmetries of the prob-
lem the embedding in the two remaining transverse di-
rections can be taken as φ(ξα) = 0 and r(ξα) = r(θ).
At the lowest order in the α′ expansion, r(θ) can be
determined by extremizing the Dirac-Born-Infeld (DBI)
action of the D7-brane with the boundary condition
r(θ) cos θ|θ→π

2
→ L, where L is related to the mass mq

of a quark in the Yang-Mills theory as mq = L
2πα′ . For

T smaller than some Tdiss, r(θ) has the form shown in
Fig. 1. The brane is closest to the black hole at θ = 0,
where there lies a 4-dimensional subspace spanned by
(t, %x) since here the S3 in (2) shrinks to a point. De-
noting rm ≡ r(θ = 0) > r0, the shortest open string
connecting the D7-brane to the horizon has a mass in
the YM theory

m(T )
q =

rm − r0

2πα′ =
√

λT
Λm − 1

2
, Λm =

rm

r0
(3)

Note that Λm is a dimensionless number of O(λ0) deter-

mined by the ratio L/r0, and m(T )
q can be interpreted as

the effective mass of a quark at temperature T .
The mesons corresponding to massless fluctuations on

the D7-brane can be found by solving the linearized equa-
tions resulting from expanding the DBI action around
the embedding. For example, the quadratic action for
the fluctuation χφ(ξα) of the location of D7-brane in the
φ direction can be written as

SDBI [χ
φ] = −µ7

2

∫

d8ξ
√
−g Gφφ gαβ∂αχφ∂βχφ (4)

where µ7 = 1
(2π)7gsα′4 is the tension of the D7-brane,

Gφφ = R2 cos2 θ, and gαβ denotes the induced metric on

the D7-brane. Writing χφ = e−iωt+i(k·(xYl(Ω3)ψ(θ), the
equation of motion for ψ can be written as

Ĥ(%k, l)ψ(θ) = ω2ψ(θ) (5)

where Ĥ(%k, l) is a second order differential operator in
θ and Yl are spherical harmonics on the S3. For a given
%k, l, Ĥ(%k, l) has only discrete eigenvalues ω2

n labeled by an
integer n, giving rise to dispersion relations ω = ωn(%k, l),
all of which have zero width. In particular, the meson

masses are of order M = 2
√

2L
R2 = 4

√
2πmq√

λ
. Since M is

parametrically smaller than mq in
√

λ, the mesons have

a large binding energy, given by 2m(T )
q . There exists a

temperature Tdiss = 0.122M , beyond which the D7 brane
falls into the black hole and mesons cease to exist as well-
defined quasi-particles [7, 10].

We stress that the zero-width conclusion only depends
on the topology of the embedding in Fig. 1. Since mesons
can only dissociate by falling into the black hole, when
the D7-brane lies above the black hole horizon the mesons
are necessarily stable. Given that the brane embed-
ding and the background geometry are smooth, includ-
ing higher order perturbative corrections in α′ should not
change the topology of the brane embedding if the dis-
tance between the brane and the horizon is parametri-
cally larger than the string scale. This implies that the
widths of mesons should remain zero to all orders in the
perturbative 1√

λ
expansion.

One can also turn on a quark chemical potential µ <

m(T )
q in the boundary theory by setting At = µ, where

At is the time component of the gauge field on the D7-
brane [11, 12]. Since the DBI action and its higher or-
der α′ corrections contain only derivatives of At, the D7-
embedding and the meson spectrum are not modified by
turning on the constant mode of At. Thus, the meson
widths and the net quark density remain zero to all or-
ders in the α′ expansion even at a finite chemical poten-
tial [18].

The above conclusions can be further illuminated by

simple thermodynamic reasoning. From (3), βm(T )
q ∝

•  Finite coupling: String worldsheet instantons. Faulkner & Liu ‘08
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•  Finite N: Hawking radiation.

Γ ∼ e−
√

λ ∼ e−Mq/T (1)

Γ ∼ 1/N2
c (2)

〈JEM
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γ

• Interesting because QGP is optically thin → Photons carry 
valuable information.

Caron-Huot, Kovtun, Moore, Starinets & Yaffe ’06
Parnachev & Sahakian ‘06

• Holographic results for massless matter:

Spectral functions, quasiparticles and 
photon/dilepton production.

• Need to calculate: Nγ ∝ ηµνχµν , χµν ∼ Im〈JEM
µ JEM

ν 〉 (1)

Γ ∼ e−
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λ ∼ e−Mq/T (2)

Γ ∼ 1/N2
c (3)

〈JEM
µ JEM

ν 〉 (4)

ΛQCD ∼ M e−
1

λ(M)

λ(M) % 1

λ(M) & 1

SχSB

Nf % Nc (5)

O
(

ΛQCD

M

)
(6)

1
η

s
∼ 1

λ2

η

s
∼ 1

λ
(7)

R4 = λ $4
s , λ = g2

YMNc (8)

Sstrong/Sfree = 3/4

Sstrong/Sfree ' 0.8

J/ψ, Υ, ...

ω = |'k|

v < 1 (9)

Tfun(v) = (1− v2)1/4 Tfun (10)

η

s
=

1

4π
(11)

η

s
= (0− 5)× 1

4π
(12)

1



Figure 1: The two possible topologies for Dq-brane probes in the background of black Dp-branes.

From the viewpoint of the holographic description, the basic physics behind this transition

is easily understood. The asymptotic distance between the Dq-branes and the black hole is

proportional to the quark mass, whereas the size of the black hole horizon is proportional

to the temperature. Thus for sufficiently small T/Mq the Dq-branes are deformed by the

gravitational attraction of the black hole, but remain entirely outside the horizon in what we

call a ‘Minkowski’ embedding (see fig. 1). However, above a critical temperature Tfun, the

gravitational force overcomes the tension of the branes and these are pulled into the horzion.

We refer to such configurations as ‘black hole’ embeddings.

In the dual field theory, this phase transition is exemplified by discontinuities in physical

quantities such as, for example, the quark condensate or the contribution of the fundamental

matter to the energy density. However, the most striking feature of this phase transition

is found in the spectrum of physical excitations of the fundamental matter. In the low-

temperature, Minkowski phase the spectrum is gapped and contains a discrete set of deeply

bound mesons (i.e., quark-antiquark bound states) with masses of order Mmeson ∼ Mq/
√

λ.

These mesons are dual to excitations supported on the probe branes (see, e.g., [16, 17, 19]) and

are absolutely stable in the large-Nc, strong coupling limit under consideration. In addition to

the mesons, the Minkowski-phase spectrum also contains well defined, quark-like excitations

described by strings stretching between the tip of the branes and the horizon. These have

masses of order Mq and are therefore parametrically heavier than the mesons.

In the high-temperature, black hole phase stable mesons cease to exist. Rather one finds

a continuous and gapless spectrum of excitations [20, 21]. Hence at the first order phase

transition at Tfun the mesons dissociate or ‘ionise’, and the electric charge is thus ‘liberated’.

However, no well defined, quasi-particle notion of an individual quark exists in this phase,

since a string stretching between any point on the branes and the horizon will quickly fall

through the horizon. In the gauge theory this corresponds to the fact that any localised quark

charge will quickly spread across the entire plasma, thus loosing its identity.

In this paper we will study photon production in the black-hole phase. We will see that

– 3 –

Universality and Scaling in AdS/CFT with Flavour

This is a beautiful paper that I very much enjoyed reading. I will be happy to

recommend its publication provided the authors can clarify the precise meaning of

the operator on the r.h.s of eq. (4.6).

This operator is not gauge-invariant in the five-dimensional gauge theory, since the

left- and right-handed quarks live at different values of x4. If it is to be understood as

an operator in the effective four-dimensional theory, then what is the gauge-invariant

five-dimensional operator it descends from?

An additional minor point is that, with the definition of χg just above eq. (1.1),

which is the usual one, I believe the numerical factor in the numerator of (1.1) must

be a 4, not a 2. Similarly, there is a factor of 1/2 missing on the right-most term of

eq. (2.6).
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χ ∼
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f 2
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Spectral functions, quasiparticles and 
photon/dilepton production.

• Spectral function for Minkowski phase:



Spectral function for BH

0 0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

ω = k0/2πT

χµ
µ(ω)

2NfNcT 2ω

Figure 4: D3/D7 system: Trace of the spectral function as a function of ω for (from top to
bottom on the left-hand side) m = {0, 0.6, 0.85, 0.93, 1.15, 1.25, 1.306}, or equivalently for ψ0 =
{0, 0.37, 0.53, 0.58, 0.75, 0.85, 0.941}. The last value corresponds to that at which the phase transi-
tion from a black hole to a Minkowski embedding takes place. Recall that ÑD7 ∼ NfNcT 2.

Note that the top, solid, red curve in fig. 5, which corresponds to ω = 0, gives (up to

normalisation) the electric conductivity (2.10). Specifically, denoting by h(m) the curve in

question, one has:

σ =
e2

4(2πT )

dχ

dω

∣

∣

∣

∣

ω=0

=
e2

4π
NfNcTh(m) . (4.24)

Again, the difference between our NfNc scaling and the N2
c scaling found in [5] reflects the

difference in the number of electrically charged degrees of freedom.

At intermediate values of ω the spectral function is not a monotonic function of m, as

can be seen in fig. 5. In fig. 4 this is reflected in the fact that curves for different values of m

cross each other around 1 ! ω ! 2. The same behaviour is of course observed in the plot of

the photon production 6.

It is also interesting to examine the spectral function for black hole embeddings beyond

the phase transition, i.e., in the region in which these are metastable or unstable. The results

for the spectral function are shown in fig. 7. The most remarkable feature of these plots is the

appearance of well defined peaks in the spectral function, which become narrower and more

closely spaced, seemingly delta-function-like, as ψ0 → 1. We will discuss the interpretation

of this fact in the last section.
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where

L3 = πgsNc#
3
s , f = 1 − r3

0

r3
, r0 =

16

9
π2T 2L3 . (5.3)

The five-dimensional Yang-Mills coupling constant in the dual gauge theory is dimensionful

and given by g2
YM = 4π2gs#s. It is convenient to introduce the dimensionless coordinate

u = r3/2
0 /2r3/2, in terms of which the metric becomes

ds2 =
(r0

L

)3/2 1

2u

(

−fdx2
0 + dx2

)

+
L3/2r1/2

0

(2u)1/3

(

4du2

9u2f
+ dΩ2

4

)

, (5.4)

with f = 1−4u2. As before, the horizon is at u = 1/2 and the boundary at u → 0.6 Since the

D6-branes wrap a two-sphere in the directions transverse to the D4-branes, it is also useful

to write the metric on the four-sphere as

dΩ2
4 = dθ2 + sin2 θdΩ2

2 + cos2 θdϕ2 , (5.5)

6The D4-brane metric considered in this section is not asymptotically of the form AdS times a sphere. The

framework for the calculation of correlators is less well developed for such backgrounds, so we will proceed

by analogy with the AdS case. Presumably, however, this procedure can be made rigourous by lifting the

D4-brane geometry to M-theory, in which it becomes an M5-brane geometry, which is of the asymptotic form

AdS times a sphere.
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Figure 14: Dispersion relation ω(|k|) for the lightest spin-zero mesons on a D7-brane Minkowski
embedding in a D3-brane background [8]. The solid blue curve corresponds to a pseudo-scalar
meson, whereas the red dashed curve corresponds to a scalar meson. The solid black line corresponds
to ω = |k|.

Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 # v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 # v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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The five-dimensional Yang-Mills coupling constant in the dual gauge theory is dimensionful

and given by g2
YM = 4π2gs#s. It is convenient to introduce the dimensionless coordinate

u = r3/2
0 /2r3/2, in terms of which the metric becomes
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with f = 1−4u2. As before, the horizon is at u = 1/2 and the boundary at u → 0.6 Since the

D6-branes wrap a two-sphere in the directions transverse to the D4-branes, it is also useful

to write the metric on the four-sphere as

dΩ2
4 = dθ2 + sin2 θdΩ2

2 + cos2 θdϕ2 , (5.5)

6The D4-brane metric considered in this section is not asymptotically of the form AdS times a sphere. The

framework for the calculation of correlators is less well developed for such backgrounds, so we will proceed

by analogy with the AdS case. Presumably, however, this procedure can be made rigourous by lifting the

D4-brane geometry to M-theory, in which it becomes an M5-brane geometry, which is of the asymptotic form

AdS times a sphere.
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Minkowski phase possesses a mass gap, but in fact it follows from the analysis in ref. [8]. To

see this, consider the dispersion relation k0(k) for a given meson in the Minkowski phase.

The fact that there is a mass gap means that k0 > 0 at k = 0. On the other hand, in

the limit of infinite spatial momentum, |k| → ∞, the dispersion relation takes the form

k0 # v|k| with v < 1. The reason for this is easily understood: For larger and larger

spatial momenta, the wave function of the meson becomes more and more concentrated at

the tip of the Dq-branes, and so the speed of the meson is simply the local speed of light

at this lowest point. Because of the gravitational redshift, this speed is always subluminal.

Continuity then implies that there must exist a value of k such that k0(|k|) = |k|. This is

illustrated by the fact that the solid black line in figure 14 intersects the other two curves.

Although the curves shown in the figure 14 correspond to scalar mesons, it is clear from the

arguments above that an analogous result would hold for other types of mesons, in particu-

lar for vector-like mesons. Since these mesons are absolutely stable in the large-Nc, strong

coupling limit under consideration, they give rise to delta-function-like ( i.e., zero-width)

peaks in the spectral function of electromagnetic currents.

In this paper we have studied photon production by calculating the electromagnetic

current-current correlator (2.5) at light-like momenta. It would be interesting to extend the

calculation to time-like momenta, since this determines the number of dileptons produced

by virtual photon decay. A first step in this direction was given in ref. [21], where the

correlator was calculated for vanishing spatial momentum.

A further extension consists of calculating the rate of photon and dilepton production

in the presence of a finite baryon chemical potential [31, 32] or density [28, 33]. For non-
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FIG.2:Decayofavectormesonintoandon-shellphoton.

null,andsothemesonpossessesthesamequantumnum-
bersasaphoton[9].Suchamesoncanthendecayinto
anon-shellphoton[10],asdepictedinfig.2.Thispro-
cesscontributesaresonancepeak,atanenergyωpeak,to
thein-mediumspectralfunctionoftwoelectromagnetic
currents,χµν(ω,k)∼〈Jµ(ω,k)Jν(−ω,−k)〉,evaluatedat
null-momentumω=k.Thisinturnproducesapeakin
thespectrumofthermalphotonsemittedbytheplasma,
dNγ/dω∼e−ω/Tχµ

µ(ω,T).Thewidthofthispeakis
thewidthofthemesonintheplasma.Infig.3wehave
illustratedthiseffectfortheN=4SYMplasmacoupled
toonemasslessquarkandoneheavyquark.Theresults
arevalidatstrongcouplingandlargeNc,sincetheywere
obtainedbymeansofthegravitydual[8].Thespectral
functionforthemasslessquarkisstructure-less,whereas
thatfortheheavyquarkexhibitsaresonancepeak–see
[8]forfurtherdetails.
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FIG.3:SpectralfunctionsfortheN=4SYMplasmacou-
pledtoamasslessquark(top,redcurve)andaheavyquark
(bottom,bluecurve),atlargeNcandstrongcoupling.

3.Auniversalpropertyofplasmaswithagravity
dual.ThegravitydualofQCDispresentlyunknown.
Whenstudyingstrongly-coupledplasmaswithagrav-
itydual,itisthereforeimportanttofocusonproperties
thatapplytoasbroadaclassofplasmasaspossible,
sincethesemayalsoapplytoQCD.Inthissectionwe
willshowthatthetwoassumptionsaboveaboutheavy
mesonsinaQGParetrueinallstronglycoupled,large-
Ncplasmaswithagravitydual,becausetheyfollowfrom
twouniversalpropertiesoftheduality:Thefactthatthe
deconfinedphaseisdescribedbyabackgroundwitha
blackhole(BH)[11],andthefactthat,inthelarge-Nc

limit,afinitenumberofflavoursNfisdescribedbyNf

D-braneprobesinthisbackground[12].
Inthepresenceoftheblackhole,therearetwopossible

phasesfortheD-branes,separatedbyauniversalfirst-
orderphasetransition[13,14].Geometrically,thesetwo
phasesaredistinguishedbywhetherornottheD-brane
tensioncancompensatefortheblackholegravitational
attraction(seefig.4).Inthefirstcasethebraneslie

FIG.4:PossibleD-braneembeddingsinaBHbackground.

completelyoutsidethehorizonina‘Minkowskiembed-
ding’.Inthesecondcasetheyfallthroughthehorizon
ina‘BHembedding’.Fromthegaugetheoryviewpoint,
thisphasetransitioncorrespondstothedissociationof
heavymesons[13,18].IntheMinkowskiphasestable
mesonsexist,andtheirspectrumisdiscreteandgapped.
Themesonmassinthisphaseincreasesastheseparation
betweenthebranesandtheblackholeincreases[19].By
contrast,intheblackholephasenomesonboundstates
exist.Recallingthattheradiusoftheblackholeispro-
portionaltotheplasmatemperature,weseethatifame-
sonissufficientlyheavycomparedtothetemperatrure,
thenthismesonremainsboundintheplasmaandisde-
scribedbyaMinkowskibrane.

Theexistenceofasubluminallimitingvelocityfor
mesonsisobviousfromthegeometricpictureabove:It
isjustthelocalspeedoflightatthetipofthebranes
[7].Indeed,thewavefunctionofamesonissupported
ontheD-branes.Thelargertheenergyofthemeson,
themoreitisattractedbytheblackholeandthemore
itswave-functionisconcentratedatthetipofthebranes
(seefig.4).Inthelimitk→∞thevelocityofthisme-
sonapproachesthelocalspeedoflightatthetipofthe
branes.BecauseoftheredshiftcausedbytheBH,this
limitingvelocityislowerthanthespeedoflightatthe
boundary,wherethegaugetheoryresides.Inthegauge
theorythistranslatesintothestatementthatvlimislower
thanthespeedoflightinthevacuum[7].Thiseffectis
clearlyillustratedinfig.1.
4.HeavyIonCollisions.Ouranalysissofarapplies
toaninfinitely-extendedplasmaatconstanttempera-
ture.Acrucialquestioniswhetherapeakinthephoton
spectrumcouldbeobservedinaheavyioncollisionex-
periment.Naturalheavyvectormesonstoconsiderare
theJ/ψandtheΥ,sincetheseareexpectedtosurvive
deconfinement.Wewishtocomparethenumberofpho-
tonscomingfromthesemesonstothenumberofpho-
tonscomingfromothersources.Accuratelycalculating
themesoncontributionwouldrequireaprecisetheoret-
icalunderstandingofthedynamicsofthesemesonsin
theQGP,whichatpresentisnotavailable.Ourgoalwill
thereforebetoestimatetheorderofmagnitudeofthis
effectwithasimplemodel.

Following[21],wemodelthefireballasanexpand-
ingcylinderwithvolumeV(t)=π(z0+vzt)(r0+
a⊥t2/2)2.Thisleadstothetemperatureevolution
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FIG. 2: Decay of a vector meson into and on-shell photon.

null, and so the meson possesses the same quantum num-
bers as a photon [9]. Such a meson can then decay into
an on-shell photon [10], as depicted in fig. 2. This pro-
cess contributes a resonance peak, at an energy ωpeak, to
the in-medium spectral function of two electromagnetic
currents, χµν(ω, k) ∼ 〈Jµ(ω, k)Jν(−ω,−k)〉, evaluated at
null-momentum ω = k. This in turn produces a peak in
the spectrum of thermal photons emitted by the plasma,
dNγ/dω ∼ e−ω/T χµ

µ(ω, T ). The width of this peak is
the width of the meson in the plasma. In fig. 3 we have
illustrated this effect for the N = 4 SYM plasma coupled
to one massless quark and one heavy quark. The results
are valid at strong coupling and large Nc, since they were
obtained by means of the gravity dual [8]. The spectral
function for the massless quark is structure-less, whereas
that for the heavy quark exhibits a resonance peak – see
[8] for further details.
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FIG. 3: Spectral functions for the N = 4 SYM plasma cou-
pled to a massless quark (top, red curve) and a heavy quark
(bottom, blue curve), at large Nc and strong coupling.

3. A universal property of plasmas with a gravity
dual. The gravity dual of QCD is presently unknown.
When studying strongly-coupled plasmas with a grav-
ity dual, it is therefore important to focus on properties
that apply to as broad a class of plasmas as possible,
since these may also apply to QCD. In this section we
will show that the two assumptions above about heavy
mesons in a QGP are true in all strongly coupled, large-
Nc plasmas with a gravity dual, because they follow from
two universal properties of the duality: The fact that the
deconfined phase is described by a background with a
black hole (BH) [11], and the fact that, in the large-Nc

limit, a finite number of flavours Nf is described by Nf

D-brane probes in this background [12].
In the presence of the black hole, there are two possible

phases for the D-branes, separated by a universal first-
order phase transition [13, 14]. Geometrically, these two
phases are distinguished by whether or not the D-brane
tension can compensate for the black hole gravitational
attraction (see fig. 4). In the first case the branes lie

FIG. 4: Possible D-brane embeddings in a BH background.

completely outside the horizon in a ‘Minkowski embed-
ding’. In the second case they fall through the horizon
in a ‘BH embedding’. From the gauge theory viewpoint,
this phase transition corresponds to the dissociation of
heavy mesons [13, 18]. In the Minkowski phase stable
mesons exist, and their spectrum is discrete and gapped.
The meson mass in this phase increases as the separation
between the branes and the black hole increases [19]. By
contrast, in the black hole phase no meson bound states
exist. Recalling that the radius of the black hole is pro-
portional to the plasma temperature, we see that if a me-
son is sufficiently heavy compared to the temperatrure,
then this meson remains bound in the plasma and is de-
scribed by a Minkowski brane.

The existence of a subluminal limiting velocity for
mesons is obvious from the geometric picture above: It
is just the local speed of light at the tip of the branes
[7]. Indeed, the wave function of a meson is supported
on the D-branes. The larger the energy of the meson,
the more it is attracted by the black hole and the more
its wave-function is concentrated at the tip of the branes
(see fig. 4). In the limit k → ∞ the velocity of this me-
son approaches the local speed of light at the tip of the
branes. Because of the redshift caused by the BH, this
limiting velocity is lower than the speed of light at the
boundary, where the gauge theory resides. In the gauge
theory this translates into the statement that vlim is lower
than the speed of light in the vacuum [7]. This effect is
clearly illustrated in fig. 1.
4. Heavy Ion Collisions. Our analysis so far applies
to an infinitely-extended plasma at constant tempera-
ture. A crucial question is whether a peak in the photon
spectrum could be observed in a heavy ion collision ex-
periment. Natural heavy vector mesons to consider are
the J/ψ and the Υ, since these are expected to survive
deconfinement. We wish to compare the number of pho-
tons coming from these mesons to the number of pho-
tons coming from other sources. Accurately calculating
the meson contribution would require a precise theoret-
ical understanding of the dynamics of these mesons in
the QGP, which at present is not available. Our goal will
therefore be to estimate the order of magnitude of this
effect with a simple model.

Following [21], we model the fireball as an expand-
ing cylinder with volume V (t) = π(z0 + vzt)(r0 +
a⊥t2/2)2. This leads to the temperature evolution



• Simple model yields, for LHC energies:
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Thermal background 
from light quarks

 J/Ψ signal

• Quadratically sensitive to        cross-section                     
-- not observable at RHIC.
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Jet quenching/energy loss
RHIC and string theory, Gubser, PiTP 2006 29 3.3 Don’t bring out the champagne just yet
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Figure 13: In blue: the trailing string of an external quark, following [21, 22]. The dashed line
shows classical propagation of a graviton from the string to the boundary, where its behavior can be
translated into the stress-energy tensor 〈Tmn〉 of the boundary gauge theory [23].

4. Jet-quenching and trailing strings
An analog of jet-quenching in AdS/CFT should involve a colored probe that we drag
through the QGP, preferably at relativistic speeds. Readiest to hand are external
quarks: strings with one end on the boundary. See figure 13.
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Energy loss and the gauge-string duality 43

The components of the energy flux can be treated in a similar manner: we define

Si = −
√

1− v2

(πT )4
√

λ
〈TK

0i 〉 (172)

and decompose #S into

#S = #SCoulomb + #SUV + #SIR + #Sres . (173)

The Coulombic expression for the Poynting vector is given by the O(K) terms in
(160) and (161). The small momentum expressions are given by

S1 IR =− 1
2π

i(1 + v2)K1 + vK2 − 2v3K2
1

K2 − 3v2K2
1 − ivK2K1

+
1
2π

i(1 + v2)K1 + vK2 − 2v3K2
1

K2 − 3v2K2
1 − ivK2K1 + µ2

IR

+
2v

π

1 + iK1/4v

K2 − 4ivK1
− 2v

π

1 + iK1/4v

K2 − 4ivK1 + µ2
IR

(174)

S⊥ IR =− 1
2π

i(1 + v2)K⊥ + b2K1K⊥)
K2 − 3v2K2

1 − ivK2K1
+

1
2π

iK⊥
K2 − 4ivK1

+ (regulators) (175)

where we have set µIR = 1 and by “(regulators)” we mean terms containing the
regulator µIR, analogous to those in (168) and (174). The large momentum ex-
pressions are given by applying (169) to (160) and (161). As was the case for the
energy density, we used µUV = 1. The real space results for the Poynting vector for
v2 = 3/4 are shown in figure 6.
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Fig. 6. (Color online.) Contour plot of the magnitude of the Poynting vector, with the Coulombic
contribution subtracted.52 The magnitude of the Poynting vector goes from red (large) to white
(zero) while the arrows show its direction. The dashed green line shows the presumed location of
the Mach angle, and the blue line shows the location of the laminar wake—as dictated by its large
distance asymptotics.
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FIG. 3: Left—Position space plot of |x|∆E(x)/(T 3
√

λ) for v = 1/4. Right—Position space plot of |x|∆S(x)/(T 3
√

λ) for
v = 1/4. The flow lines on the surface are the flow lines of the energy flux ∆S(x). There is a surplus of energy in front of the
quark and a deficit behind it. Correspondingly, trailing the quark there is a stream of energy flux which moves in the same
direction as the quark. Note the absence of structure in ∆E(x) for distances |x|" 1/(πT ).

FIG. 4: Left—Plot of |x|∆E(x)/(T 3
√

λ) for v = 3/4. Right—Plot of |x|∆S(x)/(T 3
√

λ) for v = 3/4. The flow lines on the
surface are the flow lines of ∆S(x). There is a surplus of energy in front of the quark and a deficit behind it. Correspondingly,
trailing the quark there is a narrow stream of energy flux which moves in the same direction as the quark. A Mach cone, with
opening half angle θM ≈ 50◦ is clearly visible in both the energy density and the energy flux. Near the Mach cone, the bulk of
the energy flux flow is orthogonal to the wavefront.
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BoundaryNormalization of the gauge coupling

v > vlim (1)

Tfun ∼ 1.6 Tc − 2.1Tc (2)

In some of my previous papers I normalized the coupling as g2
M = 2πgs, then 2g2

M =

g2, where g2 is the usual normalization, the one normally used in gauge theory (e.g.

Peskin-Schroeder). This can be seen as follows. I write the action as

S =
1

4g2
M

∫
d4xTr[F 2] (3)

where the trace is the ordinary trace and Fµ,ν = ∂µAν−∂νAµ+[Aµ, Aν ]. Then one can

write A = AaT a, where Tr[T aT b] = 1
2δ

ab. Then the action is S = 1
2g2

M

∫
1
4F

aF a. From

this we can see that 2g2
M = g2. This can be seen by comparing with the normalization

in Peskin and Schroeder, for example. The coupling g appears to be the standard

normalization for the SU(N) coupling.

The normalization that I have used in previous papers, and in the MAGOO review

and that is used in Polchinski’s book is gM . gM is also the natural normalization when

we have a U(1) factor.

1
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A new mechanism for quark energy loss
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Expanding plasmas

RHIC and string theory, Gubser, PiTP 2006 6 2.1 The experimental setup

Figure 1: Ultra-relativistic quantum molecular dynamics simulation of a gold-gold collision [6],
with view before (left) and after (right). Species are probably: protons (red), neutrons (white), meson
(green), and excited baryons (blue).

• The inelastic gold-on-gold cross-section may be estimated roughly as σtot =
4πR2: this is just geometric overlap.

Exercise 1 (Total cross inelastic cross section) Compute σtot in barns. About how many gold-
gold collisions has RHIC produced?

Answer

• RHIC’s design luminosity is 2× 1026 cm−2s−1. Integrated luminosity to date is
in the ballpark of 4 nb−1.
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Figure 23: String configurations corresponding to a quark-antiquark pair in the AdS-soliton
geometry (left) and the black hole geometry (right).

theory directions x(3). This is given by the energy of a string ending on the boundary at

the location of the quark and the antiquark [6], as illustrated in fig. 23. In the AdS-soliton

geometry the main contribution to the energy of a widely separated quark-antiquark pair

comes from the bottom of the geometry and grows linearly with the separation. This

leads to a linear, confining potential Vqq̄ ∝ ∆x. In contrast, in the black hole geometry

the string can break into two pieces, each of which can fall through the horizon. When

this happens the energy becomes independent of the quark-antiquark distance, leading to

a non-confining potential Vqq̄ ∼ const.

The confined and the deconfined phases are also distinguished by their spectra. Gauge

theory physical states of definite mass correspond in the gravity description to regular,

normalisable modes of the string fields of the form4 Φ ∼ h(r)eipx, with p2 = −m2. For

example, for the dilaton field, which is dual to the operator TrF 2, these modes correspond

to glueball states. Modes of this type are precisely those used in the construction of the

Hilbert space of states on the string side, so the above identification is natural in view

of the equivalence between the two theories, which in particular implies an isomorphism

between the two Hilbert spaces Hgauge $ Hstring. Moreover, it is not difficult to show

that the existence of a discrete set of modes of the type above implies, for example, that

the two-point function of the dual operator contains a discrete set of poles at p2
i = −m2

i

(see, for example, [11, 34]). In the case of the dilaton, this means that the correlator

〈TrF 2(p)TrF 2(−p)〉 has poles at the location of physical glueball states.

In the AdS-soliton geometry, the spectrum of normalisable modes is discrete and pos-

sesses a mass gap. The first property is easy to understand on general grounds. The

linearised wave equation for a given mode admits two independent solutions at infinity,

4More generally, dependence on y and the coordinates on the S4 is also possible.

32

• Simplest model:                                        
D4-branes on a circle.

Witten ‘98

Two fundamental properties:
I. Confinement

one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
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−fdt2 + dx2
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In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r
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)3/4
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Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E
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R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(
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)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(
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)3/2 dr2

f
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In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes
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L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
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The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
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to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
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on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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• Can be seen by turning on temperature:

Comments                

one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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Nc D4

Nf D8

Nf D̄8

SU(Nf)L × SU(Nf)R → SU(Nf)V (1)

−→ SU(Nf)V (2)

Check: Spectrum contains N2

f
− 1 massless pions.

ΛQCD ∼ Mglueball ∼ MKK ∼ 1/R (3)

〈ψ̄ψ〉 ∼ Mmeson ∼ 1/L (4)

Tc (5)

Tfun (6)
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Separating the scales of confinement and chiral-symmetry

breaking in lattice QCD with fundamental quarks

D. K. Sinclair

HEP Division and Joint Theory Institute, Argonne National Laboratory,

9700 South Cass Avenue, Argonne, IL 60439, USA

Abstract

Suggested holographic duals of QCD, based on AdS/CFT duality, predict that one should be

able to vary the scales of colour confinement and chiral-symmetry breaking independently. Fur-

thermore they suggest that such independent variation of scales can be achieved by the inclusion of

extra 4-fermion interactions in QCD. We simulate lattice QCD with such extra 4-fermion terms at

finite temperatures and show that for strong enough 4-fermion couplings the deconfinement tran-

sition occurs at a lower temperature than the chiral-symmetry restoration transition. Moreover

the separation of these transitions depends on the size of the 4-fermion coupling, confirming the

predictions from the proposed holographic dual of QCD.

1

• “Verified” on the lattice:

Comments                



one of the most important ones being that it does not exhibit confinement. In this section

we will study the simplest example of a confining theory with a gravity dual, as well as the
gravitational analogue of the confinement/deconfienement phase transition.

5.1 A confining theory from D4-branes

One simple way to construct a confining gauge theory with a gravity dual, due to Witten
[24], is to start with Nc D4-branes, instead of with Nc D3-branes as in section 3. The gauge

theory on the D4-branes is a maximally supersymmetric, SU(Nc) SYM theory in five dimen-
sions whose field content consists, in addition to the gluons, of scalars and fermions in the

adjoint representation. In order to obtain a four-dimenional theory, consider compactifying
one spacelike direction of the D4-branes on a circle S1

L of length L. Since we would like to

break supersymmety, we impose antiperiodic boundary conditions for the fermions around this
circle. This projects out their zero-mode, so from the four-dimensional viewpoint they acquire
a tree-level mass M ∼ 1/L. Through quantum effects, a mass is also generated for the scalars.

The only degrees of freedom that remain massless in four dimensions are the (zero modes of)
the gauge fields, since a mass for these is forbidden by gauge invariance. Thus at energies

E " M the theory reduces to pure SU(Nc) Yang-Mills, which we expect to confine at some
dynamically generated scale ΛQCD. We also expect that a confinement/deconfinement phase
transition should occur at a temperature Tdec ∼ ΛQCD.

Before we proceed to construct the gravitational description of the D4-brane theory above,
let us note that we would like to study this theory in the regime in which ΛQCD " M , so that

dynamics we are interested in is not contaminated by the presence of additional fields at the
scale M . We will see in this section that, unfortunately, this limit cannot be described in the

dual string theory using solely supergravity. We will discuss the implications of this in the last
section.

The construction of the gravity solution dual to the theory on the D4-branes is easily

constructed along the lines of previous sections. One starts with the solution for near-extremal
D4-branes and takes an appropriate decoupling limit. The result is the ten-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
+ R3/2r1/2ds2

(

S4
)

, (36)

where

f(r) = 1 − r3
0

r3
. (37)

The last term on the right-hand side is the round metric on a unit four-sphere. The coordinates
on this sphere, together with the radial coordinate r, span the five-dimensional space transverse

to the D4-branes. The coordinates t, x(3), y span the five-dimensional worldvolume of the D4-
branes and are identified with the gauge theory coordinates. The coordinate y is periodically

identified with period L, i.e., y ∼ y + L.
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Unlike the metric on AdS5 × S5, the metric (36) does not factorise into a direct product

of some spacetime times a sphere. Nevertheless, the last term in (36) will play no role in the
following and so we will effectively work with the six-dimensional metric

ds2 =
( r

R

)3/2
(

−fdt2 + dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (38)

In addition to the metric (36), the solution sourced by D4-branes possesses a non-trivial dilaton
field given by

eΦ =
( r

R

)3/4
. (39)

Physically, this is one of the most important differences between the D4-brane solution and the
analogous D3-brane solution, for which the dilaton is constant. Recalling that the dilaton is

related to the SYM coupling constant gYM and that r is related to the energy scale in the gauge
theory, we realise that the running dilaton above merely reflects a running coupling constant

in the gauge theory, namely a non-trivial RG flow; another reflection of this running is the
fact that the scalar curvature of the metric (38) is not constant. Thus, as promised, we have
constructed the first example of a non-AdS dual of a non-conformal gauge theory. Note that

the dilaton diverges as r → ∞, i.e., in the ultraviolet. This corresponds to the fact that the
five-dimensional dual gauge theory on the D4-branes is not renormalisable and hence a UV

completion is needed. We will not need the details of this completion here. Suffice it to say
that it is provided by the (2,0) superconformal theory on Nc M5-branes, consistently with the

fact the D4-brane solution lifts to the eleven-dimenional solution sourced by the M5-branes.
The metric (36) possesses a regular, finite-area horizon at r = r0. In order to determine

its Hawking temperature T , which we must identify with the gauge theory temperature, we

proceed as in section 4. We first continue to Euclidean signature via t → itE with the result

ds2
E

=
( r

R

)3/2
(

fdt2
E

+ dx2
(3) + dy2

)

+

(

R

r

)3/2 dr2

f
. (40)

Then we demand regularity at r = r0, which forces us to compactify tE on a circle S1
β of length

β = 1/T , i.e., tE ∼ tE + β. A simple calculation shows that

r0 =

(

4π

3

)2 R3

β2
. (41)
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Comments                

Nc D4

Nf D8

Nf D̄8

1

Nc D4

Nf D8

Nf D̄8

1

Nc D4

Nf D8

Nf D̄8

1

• Quark masses require non-local operators: 

Nc D4

Nf D8

Nf D̄8

SU(Nf)L × SU(Nf)R → SU(Nf)V (1)

−→ SU(Nf)V (2)

Check: Spectrum contains N2

f
− 1 massless pions.

ΛQCD ∼ Mglueball ∼ MKK ∼ 1/R (3)

〈ψ̄ψ〉 ∼ Mmeson ∼ 1/L (4)

Tc (5)

Tfun (6)

O ∼ ψ†
L

P ei
R

A ψR (7)

1

Aharony & Kutasov ‘08
McNees, Myers & Sinha ‘08 

Casero, Kiritsis & Paredes ‘07
Bergman, Seki & Sonnenschein ‘07

Dhar & Nag ‘07 
Dhar & Nag ‘08

• Alternatively: Tachyon condensation.



Recent application: N-N force

NN

Kim & Zahed ’09
Hashimoto, Sakai & Sugimoto ’09

Kim, Lee & Yi ‘09
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• The good:

- Very hard on the lattice.
- Very easy in the string description. 

• The bad:

- Most models have scalars (eg. D3/D7)
Nakamura, Seo, Sin & Yogendran ’06

Kobayashi, D.M., Matsuura, Myers & Thomson ’06
Karch & O’ Bannon  ‘07

- Very easy only at large      , where phase 
diagram is very different !

Nc D4

Nf D8

Nf D̄8

SU(Nf)L × SU(Nf)R → SU(Nf)V (1)

−→ SU(Nf)V (2)

Check: Spectrum contains N2

f
− 1 massless pions.

ΛQCD ∼ Mglueball ∼ MKK ∼ 1/R (3)

〈ψ̄ψ〉 ∼ Mmeson ∼ 1/L (4)

Mq = 0 (5)

Tfun (6)

O ∼ ψ†
L P ei

R

A ψR (7)

〈JEM

µ JEM

µ 〉 (8)

cc̄ (9)

1

- Fortunately, S&S does not. Kim, Sin & Zahed ’06
Horigome &Tanii ’06

Sin ’07
Yamada ‘07

Bergman, Lifschytz & Lippert ’07

General remarks

- However, see CFL phase in Chen, Hashimoto & Matsuura  (to appear)
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FIG. 1: The phase diagram in the µq −T plane. The dashed line indicates a continuous transition.

The transition line lies exactly on the curve m(T )
q until a critical temperature Tc very close (but

not equal) to the dissociation temperature Td.

(near the vertical axis) through a tricritical point whose location we identify precisely, see

Fig .1.

While our conclusions of a continuous phase transition along (1) are consistent with the

analysis of [10] who noted a phase transition along the m(T )
q line at zero density they are

different from a later discussion in [12] where a first order transition was noted. In [12] the

relation between charge density and temperature was studied numerically near the transition

line and a very small discontinuity in density was noticed, due to a change in dominance

between a Minkowski type embedding with zero density and a black hole embedding. It

appears to us that the discontinuity likely has to do with the numerical accuracy of their

calculation. We do not find a discontinuity in charge density along the transition line (see

equation (2) below)5. More importantly, we have identified a clear physical reason for

the phase transition, which indicates that it should not be considered as an exchange of

dominance between different embedding solutions, which was behind the reasoning of the

conclusion in [12]. As observed in [21], for Minkowski type embedding at finite temperature,

there are worldsheet instanton corrections to the leading order Dirac-Born-Infeld (DBI) ac-

5 We have obtained our results both analytically and numerically with agreement.

4

Cautionary word about (ignoring) 
stringy effects

Nakamura, Seo, Sin & Yogendran ’06
Kobayashi, D.M., Matsuura, Myers & Thomson ’061st order SUGRA

String worldsheet instantons Faulkner & Liu ‘08



Concluding thoughts



Is SUGRA good or bad?

E

N=4 SYM

M

ΛQCD

Within SUGRA approximation 
this is               .

O
(

ΛQCD

M

)
(1)

∼ O(1) (2)

R4 = λ "4
s , λ = g2

YMNc (3)

Sstrong/Sfree = 3/4

Sstrong/Sfree " 0.8

J/ψ, Υ, ...

ω = |%k|

v < 1 (4)

Tfun(v) = (1− v2)1/4 Tfun (5)

η

s
=

1

4π
(6)

η

s
= (0− 5)× 1

4π
(7)

T/Mmes (8)

n∗
B

nB

Nf

√
λT 3

(9)

JB
µ = JEM

µ (10)

Nf/Nc (11)

GNTD7 ∼
λNf

Nc

(12)

1

O
(

ΛQCD

M

)
(1)

R4 = λ "4
s , λ = g2

YMNc (2)

Sstrong/Sfree = 3/4

Sstrong/Sfree ! 0.8

J/ψ, Υ, ...

ω = |%k|

v < 1 (3)

Tfun(v) = (1− v2)1/4 Tfun (4)

η

s
=

1

4π
(5)

η

s
= (0− 5)× 1

4π
(6)

T/Mmes (7)

n∗
B

nB

Nf

√
λT 3

(8)

JB
µ = JEM

µ (9)

Nf/Nc (10)

GNTD7 ∼
λNf

Nc

(11)

η/s

First order phase
transition at Tfun

O
(

Nf

Nc

)
(12)

1

Corrections are                 .

Pessimist: “This is a disaster!”.

Optimist: “This gets the order of magnitude right!”.

Eg.: Is               the biggest success or a disaster?η

s
=

1

4π
(1)

D = q1q2q3 (2)

S = 2π

√

D2

4
− DJψ −

1

4
(Q2

1
q2
1

+ Q2
2
q2
2

+ Q2
3
q2
3
) +

D

2

(

Q1Q2

q3

+
Q2Q3

q1

+
Q1Q3

q2

)

(3)

Qi , qi , Jψ (4)

Jφ =
1

2
(Q1q1 + Q2q2 + Q3q3 − q1q2q3) (5)

Jψ = R2 (q1 + q2 + q3) + Jφ (6)

M =
∑

i

|Qi| (7)

R2 (8)

qi =

∫

S2

Fi (9)

Qi , Jψ , Jφ (10)

R , Qi , qi (11)

|M, J, Q, ?〉 (12)

|M, J, Q〉 (13)

× (14)

|M, J, Q, ?〉SUSY (15)

M, J, Q, qi (16)

S1 × S2 horizon (17)

S3 horizon (18)

S =
A

4GN

(19)

1



Thank you.


