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Motivation: Experiments (RHIC) probe systems with finite gradients.

Phenomenologically observed low viscosity is an “effective” viscosity measured at

momentum typical for a process in study.

New phenomena: Conical flows linear perturbations on top of global explosion.

These are small size perturbations sensitive to high gradients.

Main Idea:

Introduce all order dissipative terms in the gradient expansion of T µν.

(∇∇u) we keep (∇u)
2

we neglect

Extract momenta dependent viscosities by matching two-point correlation functions

of stress tensor with correlation functions computed from BH AdS/CFT.

Outlook of the talk:

• Old Life on the boundary: relativistic hydro (NS and IS)

• Life in the bulk: gravity perspective

• New Life on the boundary: all order (linearized) hydro

• The bulk meets the boundary



Relativistic Hydrodynamics

Energy momentum tensor

〈Tµν〉 = (ǫ + P) u
µ

u
ν

+ P g
µν

+ Π
〈µν〉

Πµν - tensor of dissipations ( ideal fluid: Πµν = 0)

Π
〈µν〉

=
1

2
∆

µα
∆

µβ
(Παβ + Πβα) − 1

3
∆

µν
∆

αβ
Παβ

∆
µν

= g
µν

+ u
µ
u

ν

Navier Stokes hydro (expanding in the velocity gradient)

Παβ = − η ∇α uβ

∇µ 〈Tµν〉 = 0 −→ Navier − Stokes Eq.



Retarded Correlators

G
µναβ

(k, ω) = − i

Z ∞

0

dt

Z

d
3
x e

−i ω t + ikz 〈[Tµν
(x, t), T

αβ
(0)]〉

The sound:

G
S(k, w) ≡ G

tztz = (ǫ + P)
k2 − 4 i η̄ ω k2

k2 − 3 ω2 − 4 i η̄ ω k2

The shear:

G
D
(k, w) ≡ G

txtx
= (ǫ + P)

η̄ k2

−i ω + η̄ k2

The scalar:

G
T(k, w) ≡ G

xyxy = − i (ǫ + P) ω η̄

2 π T = 1 and η̄ ≡ 2 π η/s





Local rest frame u = (1, 0, 0, 0) (x0, x1, x⊥) → (τ, y, x⊥)

τ - proper time, y - spacetime rapidity

x
0

= τ ch(y) x
1

= τ sh(y)

The metric (1d Hubble expansion)

ds2 = − d2τ + τ2 d2y + d2x⊥

Hydro eq. simplify dramatically:

∂τ ǫ(τ) = − 4 ǫ

3 τ
+

4 η

3 τ2

Solution for η = 0: Bjorken (1986)

ǫ ∼ 1

τ4/3
T ∼ 1

τ1/3
∂τ (s τ) = 0

Solution for η 6= 0:

∂τ (s τ) =
4 s

3

η

s

1

T τ



Israel-Stewart second order Hydrodynamics

Solves causality problems present in Navier-Stokes

Add extra term in the gradient expansion + non-linear terms in (∇u)

Π
µν = (1 − τR uλ ∇λ ) Π

µν
NS

Iterate the equation

(1 + τR uλ ∇λ
) Π

µν
= Π

µν
NS

When thinking about small perturbations uλ ∇λ → ∇t → − i ω

The IS second order hydro is equivalent (in the linear approximation) to

η → η

1 − i τR ω

Sound dispersion

ω = c k [1 + η̄ c
2
k

2 (2 τR − η̄)] − i c
2 η̄ k

2 [1 + c
2
k

2 η̄ τR (2 η̄ − τR)]



Retarded Correlators from gravity

P. Kovtun and A. Starinets, Phys.Rev.Lett.96:131601,2006

For three channels a=S,D,T

d2

dr2
Za(r) + pa(r)

d

dr
Za(r) + qa(r)Za(r) = 0 ,

Absorptive boundary condition (incoming wave) at the horizon r = 1:

Za(r → 1) ∼ e
−iω/2

Two independent local solutions at r = 0,

Za(r) = Aa Z
I
a(r) + Ba Z

II
a (r) ,

ZI
a is irregular in the origin while ZII

a is a regular solution.

G̃a(ω, k) = − 8 P
Ba(ω, k)

Aa(ω, k)



The scalar channel

pT (r) = −1 + r2

rf
, qT(r) =

ω2 − k2f

rf2
,

where f = 1 − r2

The shear channel

pD(r)=
(ω2 − k2f)f + 2r2ω2

rf(k2f − ω2)
, qD(r)=

ω2 − k2f

rf2
.

The sound channel

pS(r) = −3ω2(1 + r2) + k2(2r2 − 3r4 − 3)

rf(3ω2 + k2(r2 − 3))
,

qS(r) =
3ω4 + k4(3−4r2+r4) + k2(4r2ω2−6ω2−4r3f)

rf2(3ω2 + k2(r2 − 3))
.



Small momenta perturbation theory

Extending R. Baier, P. Romatschke, D.T. Son, A.O. Starinets, M.A. Stephanov, JHEP 0804:100,2008
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3
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+ · · ·

Shear mode: ω = − i
k2

2
− i

1 − ln 2

4
k

4
+ · · ·

τR = 2 − ln 2 S. Bhattacharyya, V. E Hubeny, S. Minwalla, M. Rangamani, JHEP 0802:045,2008
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Sound and Holography

P. Kovtun and A. Starinets, Phys.Rev.D72:086009,2005

Quasi-normal mode analysis in the AdS BH background - the sound channel

ℜe[ω] = c k +
∞
X

n=1

rn k2 n+1 ℑm[ω] = − η̄

"

c2 k2 +
∞
X

n=2

βn k2 n

#

β2 < 0 while the IS second order hydro leads to β2 > 0



Momenta dependent viscosity (naive)

M.L. and E. Shuryak, Phys.Rev.C76:021901,2007.

Effective viscosity η(k) = η̄

"

1 + c−2
∞
X

n=1

βn+1 k2 n

#

Entropy production in the Bjorken Hydro:
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Too naive: Bjorken hydro is very sensitive to the non-linear effects (so far neglected)



Life on the boundary: Linearized Hydro to all orders

Invariance under the local Weyl transformation gµν → e−2 Ω(x,t) gµν

T µν → e6 Ω(x,t) T µν ; uµ → eΩ(x,t) uµ Cµ
ανβ → Cµ

ανβ

Cλ
µνα = Rλ

µνα − 1

2
(gλ

ν Rµα − gλ
α Rµν − gµν Rλ

α + gµα Rλ
ν) +

1

6
R (gλ

ν gµα − gλ
α gµν),

Introduce all order gradient expansion of T µν:

Πµν = − 2 η ∇µ uν + 2 κ uα uβ Cµανβ + ρ (uα ∇β + uβ ∇α) Cµανβ + ξ ∇α ∇β Cµανβ

η = η[∇2
, (u∇)] ; κ = κ[∇2

, (u∇)] ; ρ = ρ[∇2
, (u∇)] ; ξ = ξ[∇2

, (u∇)] ;

∇2 → ω2 − k2 and (u∇) → − i ω.



Πµν = − 2 η ∇µ uν + 2 κ uα uβ Cµανβ + ρ (uα ∇β + uβ ∇α) Cµανβ + ξ ∇α ∇β Cµανβ

We keep the nonlinear dispersion to all orders, but

We neglect nonlinear interactions (though some terms could be recovered).

We postulated a constitutive relation between 〈T ij〉 and three-velocity vi.

The first term generalizes the usual shear viscosity coefficient η0 defined at zero

frequency and momentum. It also contains the relaxation time τR.

What is the physical role of κ, ρ and ξ (we call them Gravitational Susceptibilities

of Fluid (GSF))? GSFs are absent in Minkowski space. GSFs contribute directly to

two-point functions of stress tensors.

The correlators of T µν contain not only “thermal” physics but in addition get

contaminated by the vacuum or zero temperature contributions due to pair

production.

It is tempting to identify the viscosity term with pure hydrodynamic (“thermal”)

physics associated with the matter flow, and the GSFs with non-matter effects and

the interference thereof.



Retarded Correlators from Hydrodynamics

Linear response

G
αβµν

=
δT αβ

δhµν
|h=0

The scalar (hxy):

G
T(k, ω) = − i ω η − κ

1

2
(ω2 + k

2) − ρ
i ω

2
(ω2 − k

2) + ξ
1

4
(ω2 − k

2)2

The shear (htx):

G
D(k, ω) = (ǫ +P)

η̄ k2 − iκ̄ ω k2/2 − ρ̄ k2 (k2 − 2 ω2)/4 + i ξ̄ ω k2 (ω2 − k2)/4

−i ω + η̄ k2

The sound (htz):

G
S
(k, ω) = (ǫ + P)

k2 − 4 i η̄ ω k2 − 2 κ̄ ω2 k2 − 2 i ρ̄ ω3 k2 + ξ̄ ω4 k2

k2 − 3 ω2 − 4 i η̄ ω k2



On quasinormal modes

The entire information about quasinormal modes is coded in viscosity η.

GSFs do not have any poles. If this were not true, we would observe appearance

of identical quasinormal modes in all three channels.

η(k2, ω) =
∞
X

n=0

ηn(k
2, ω)

ω − ωn(k2)

ωn coincide with the quasinormal modes of the scalar channel (poles of GT ).

Quasinormal modes of the shear and sound channels

− i ω + η(k2, ω) k2 = 0; − 3 ω2 + k2 − 4 i η(k2, ω) ω k2 = 0



4 vs 3 Puzzle

There should be one to one correspondence between linearized T µν and the full

set of its correlators.

Our program is to equate the “hydro” correlators with the correlators computed

from the bulk gravity. The goal is to invert these equations in order to determine

the four transport coefficient functions.

We end up having only 3 equations for 4 unknown functions!

This system does not seem to have a unique solution. Despite our failure to

simultaneously determine all transport coefficient functions, we are able to extract

them perturbatively in the long-wave limit approximation.



In the long-wave limit all coefficient functions are expandable in power series

η = η0 (1+iη0,1 ω+η2,0 k
2
+η0,2 w

2
+i η2,1 ω k

2
+ i η0,3 ω

3
+η4,0 k

4
+η2,2 ω

2
k

2
+η0,4 ω

4
+· · ·);

κ = κ0 (1 + i κ0,1 ω + κ2,0 k2 + κ0,2 w2 + i κ2,1 ω k2 + i κ0,3 ω3 + · · ·) ;

ρ = ρ0 (1 + i ρ0,1 ω + ρ2,0 k2 + ρ0,2 w2 + · · ·)
ξ = ξ0 (1 + i ξ0,1 ω + · · ·)

1st and 2nd order hydro

η0 = 1/2; τR ≡ η0,1 = 2 − ln 2 ; κ0 = 2 η0

3rd order hydro

λ ≡ η2,0 = − 1/2; η0,2 ≃ − 1.379 ± 0.001 ≃ − 3

2
+

ln2 2

4

κ0,1 = 5/2 − 2 ln 2 ; ρ0 = 4 η0

4th order hydro

η2,1 = − 2.275 ± 0.005 ; η0,3 = − 0.082 ± 0.003
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In order to illustrate the qualitative difference between the IS model and the

AdS-based viscosity, we compute sound dispersion and focus on the first correction

to its width in both cases.

ωIS = ± k√
3

„

1 +

„

1

2
− ln[2]

3

«

k
2

«

− i
k2

3

 

1 +
k2

3
ln 2 (2 − ln 2)

!

The k4 correction to the sound width is positive, in contrast to the AdS result

which is negative

ωAdS = ± k√
3

„

1 +

„

1

2
− ln[2]

3

«

k
2

«

− i
k2

3

 

1 − k2

12
(4 − 8 ln 2 + ln

2
2)

!

The IS predicts an increase of the width while AdS-based result leads to the

opposite effect.



Improved Causal Hydrodynamics

ηmodel =
η0

1 − λ k2 − i ω τR
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Introducing a memory function

D(x, t) =

Z

dω d
3
k e

−i ω t + i k x η(k2, ω) =
1

2
√

2

η0

τR

„

τR

−λ t

«3/2

e
− t / τR e

− x2 τR / (−λ t)

which leads to the following expression for the dissipation tensor Π:

Π
µν

(x, t) = − 2

Z t

0

dt
′
Z

d
3
x
′
D(x − x

′
, t − t

′
) ∇′µ

u
ν
(x

′
, t

′
)



Conclusions

• We have initiated study of all order (linearized) hydrodynamics.

• The 4 vs 3 puzzle remains unsolved.

Possible solutions may involve either the membrane paradigm approach or prove

that the iterative procedure works to any order

• We have determined few new transport coefficients

• We cautiously suggest that the results based on IS might be less reliable than

it was previously thought. We have proposed an improved phenomenological

model.

• The effective viscosity is a decreasing function both of frequency and

momentum. This behavior might be the reason behind the low viscosity

observed at RHIC. It may also explain the exceptionally good survival of various

hydrodynamic flows, particularly the sound waves.


