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Second theme : What new insights does fluid-gravity
correspondence bring to gravity ?
For these questions, one is interested in much more details
of the bulk field configurations than before.
In this talk : will focus mainly on a question in the second
set - exact solutions in AdSd+1 dual to Hydrod .
But, will also learn some interesting phenomena in Hydrod
along the way.
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Hydrodynamics - A tractable description at finite T

Basic Variables : Velocity uµ(Energy frame/Charge
frame), Temperature T
and Charge density n or Chemical potential µ.
Energy/Momentum transport : Tµν with ∇µTµν = 0.
Charge transport described by Jµ with ∇µJµ = 0.
Inputs : Eqn. of State, Constitutive relations . . .
Hydrodynamics : the first step from equilibrium towards
near equilibrium physics.
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Scaling in Hydrodynamics

Scaling is a powerful concept in hydrodynamics -
especially if there is an underlying CFTd .
Weyl transformation in hydrodynamics : gµν = e2φg̃µν and
uµ = e−φũµ.
Energy scales scale as T = e−φT̃ and µ = e−φµ̃.
Densities transform as n = e−(d−1)φñ, Jµ = e−dφJ̃µ and

Tµ
ν = e−dφT̃µ

ν + Anomalous corrections
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Weyl Covariance is useful

Introduce in CFTd hydrodynamics

Aν ≡ uλ∇λuν −
∇λuλ

d − 1
uν = Ãν + ∂νφ.

R. Loganayagam . arXiv:0801.3701 [hep-th]

Helps in ‘Weyl-covariantly’ differentiating tensors

If Qµ...
ν... = e−wφQ̃µ...

ν... then DλQµ...
ν... = e−wφD̃λQ̃µ...

ν...

with Dλ Qµ...
ν... ≡ ∇λ Qµ...

ν... + w AλQµ...
ν...

+
[
gλαAµ − δµλAα − δ

µ
αAλ

]
Qα...
ν... + . . .

− [gλνAα − δαλAν − δανAλ] Qµ...
α... − . . .

Aµ uniquely determined by Dλgµν = 0 , uλDλuµ = 0 and
Dµuµ = 0. Mathematical Aside
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uν = Ãν + ∂νφ.

R. Loganayagam . arXiv:0801.3701 [hep-th]

Helps in ‘Weyl-covariantly’ differentiating tensors

If Qµ...
ν... = e−wφQ̃µ...

ν... then DλQµ...
ν... = e−wφD̃λQ̃µ...

ν...

with Dλ Qµ...
ν... ≡ ∇λ Qµ...

ν... + w AλQµ...
ν...

+
[
gλαAµ − δµλAα − δ

µ
αAλ

]
Qα...
ν... + . . .

− [gλνAα − δαλAν − δανAλ] Qµ...
α... − . . .

Aµ uniquely determined by Dλgµν = 0 , uλDλuµ = 0 and
Dµuµ = 0. Mathematical Aside

R. Loganayagam



Introduction
Hydrodynamics and Weyl Covariance

Chern-Simons and Anomaly
Discussion and Conclusions

Weyl-Covariantised Curvature Tensors

Weyl covariantised Riemann tensor can be obtained from

[Dµ,Dν ]Vλ = w Fµν Vλ +Rµνλα Vα with
Fµν ≡ ∇µAν −∇νAµ

Rµνλσ ≡ Rµνλσ + Fµνgλσ

− δα[µgν][λδ
β
σ]

(
∇αAβ +AαAβ −

A2

2
gαβ

)
where B[µν] ≡ Bµν − Bνµ indicates antisymmetrisation. Other
related tensors defined similarly - will later need

Sµν ≡
1

d − 2

(
Rµν −

Rgµν
2(d − 1)

)

R. Loganayagam
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Weyl-covariant Hydrodynamics

By construction, Dµuν is traceless and transverse to the
velocity.
Split Dµuν = σµν + ωµν where
σµν is the shear strain rate
(symmetric,traceless,transverse) tensor which in viscous
fluids leads to dissipation.
ωµν is the vorticity (antisymmetric,transverse) tensor which
measures local rotation of the fluid element.
The hydrodynamic equations can be written in a manifestly
Weyl-covariant form(W is the Weyl anomaly)

DµTµν ≡ ∇µTµν +Aν(Tµ
µ −W) = 0

DµJµ ≡ ∇µJµ + (w − d)AµJµ = 0

R. Loganayagam
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Encoding hydrodynamics around Ingoing geodesics

In fluid-gravity correspondence, this hydrodynamic data in
the particular patch of the boundary encoded in the ‘tube’
around the ingoing null geodesic.
Within these tubes, the metric is approximately that of a
static black-brane metric which has been appropriately
‘boosted’.
Starting from this picture, we can systematically calculate
order by order in the boundary derivative expansion how
the metric deviates from the locally boosted black-brane
metric. (See Prof.Shiraz Minwalla’s talk before).

S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani. arXiv:0712.2456 [hep-th]

R. Loganayagam



Introduction
Hydrodynamics and Weyl Covariance

Chern-Simons and Anomaly
Discussion and Conclusions

Encoding hydrodynamics around Ingoing geodesics

In fluid-gravity correspondence, this hydrodynamic data in
the particular patch of the boundary encoded in the ‘tube’
around the ingoing null geodesic.
Within these tubes, the metric is approximately that of a
static black-brane metric which has been appropriately
‘boosted’.
Starting from this picture, we can systematically calculate
order by order in the boundary derivative expansion how
the metric deviates from the locally boosted black-brane
metric. (See Prof.Shiraz Minwalla’s talk before).

S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani. arXiv:0712.2456 [hep-th]

R. Loganayagam



Introduction
Hydrodynamics and Weyl Covariance

Chern-Simons and Anomaly
Discussion and Conclusions

Encoding hydrodynamics around Ingoing geodesics

In fluid-gravity correspondence, this hydrodynamic data in
the particular patch of the boundary encoded in the ‘tube’
around the ingoing null geodesic.
Within these tubes, the metric is approximately that of a
static black-brane metric which has been appropriately
‘boosted’.
Starting from this picture, we can systematically calculate
order by order in the boundary derivative expansion how
the metric deviates from the locally boosted black-brane
metric. (See Prof.Shiraz Minwalla’s talk before).

S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani. arXiv:0712.2456 [hep-th]

R. Loganayagam



Introduction
Hydrodynamics and Weyl Covariance

Chern-Simons and Anomaly
Discussion and Conclusions

Dual metric in d dimensions

This procedure was implemented in AdSd+1 for arbitrary d
by

M. Haack and A. Yarom arXiv:0806.4602 [hep-th]
S.Bhattacharyya, R.Loganayagam,I.Mandal,S.Minwalla,A.Sharma. arxiv : 0809.4272[hep-th]

Since we are eventually interested in stationary blackhole
configurations we will specialise to stationary fluid
configurations without any dissipation.
Further, since the Hydrod is conformal, the metric should
just depend on the conformal data in the boundary
This implies that we expect the metric to be invariant under
boundary Weyl transformations (along with the scaling of
the radius)

R. Loganayagam
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Choose a gauge in which the bulk metric is of the form

ds2 = −2uµ(x)dxµ(dr + Vν(r , x)dxν) + Gµν(r , x)dxµdxν

where Gµν is transverse, i.e., uµGµν = 0.
Boundary Weyl transformation should induce a
bulk-diffeomorphism of the form r = e−φ(x)r̃ along with a
scaling in the temperature of the form b = eφb̃.
Under this, the metric components transform as

Vµ = e−φ
[
Ṽµ + r̃ ∂µφ

]
, uµ = eφũµ, Gµν = G̃µν

i.e., Vµ and Gµν are functions of b and uµ that respectively
transform like a connection/remain invariant under
boundary Weyl transformation.

R. Loganayagam
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In this notation, the dual metric in d dimensions is of the
form

ds2 = −2uµdxµ (dr + rAνdxν)

+
[
r2gµν + u(µSν)λuλ − ωµλωλν

]
dxµdxν

+
1

(br)d (r2 − 1
2
ωαβω

αβ)uµuνdxµdxν

+ dissipative/higher derivative terms

Fluid gravity correspondence leads us to expect that the
known exact BH solutions reproduce this structure. Do
they ?

R. Loganayagam
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AdSd+1 Kerr metric
In ‘altered’ Boyer-Lindquist co-ordinates, AdS Kerr metric is

G.W. Gibbons, H. Lu, D.N. Page, C.N. Pope [hep-th/0404008]

ds2 = −W (1 + r2)dt̂2 +
Fdr2

1− 2M/V

+
2M
VF

(
Wdt̂ −

n∑
i=1

ai µ̂
2
i dϕ̂i

1− a2
i

)2

+
n+ε∑
i=1

r2 + a2
i

1− a2
i

[
d µ̂2

i + µ̂2
i dϕ̂2

i

]

− 1
W (1 + r2)

(
n+ε∑
i=1

r2 + a2
i

1− a2
i
µ̂id µ̂i

)2

where d = 2n + ε with ε = d mod 2 and

W ≡
n+ε∑
i=1

µ̂2
i

1− a2
i

; V ≡ rd (1 +
1
r2 )

n∏
i=1

(1 +
a2

i
r2 )

and F ≡ 1
1 + r2

n+ε∑
i=1

r2µ̂2
i

r2 + a2
i
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AdSd+1 Kerr metric II

After a series of co-ordinate transformations, we can bring
this complicated metric to a simple “hydrodynamic” form

ds2 = −2uµdxµ (dr + r Aνdxν)

+
[
r2gµν + u(µSν)λuλ − ωµλωλν

]
dxµdxν

+
r2uµuν

bddet [r δµν − ωµν ]
dxµdxν

This agrees with the metric derived via boundary derivative
expansion
Further, in this hydrodynamic form, the AdS Kerr meric is
manifestly invariant under boundary diffeomorphisms/
Weyl transformation !
This is very useful. It is almost trivial in this form to go to a
rotating co-ordinates in the boundary, for example.

R. Loganayagam
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Charged Rotating AdS5 Blackholes

Focus on two-derivative theory of gravity in five dimensions
with asymptotically AdS boundary conditions
Interested in matter content that allows consistent
truncation to Einstein-Maxwell Chern-Simons system
E.g. IIB SUGRA in AdS5×S5 the equal R-charge sector.
Truncated action is

S =
1

16πGAdS

∫ [√
−g5(R + 12)− 1

2
F ∧ ∗5F +

2κ
3

A ∧ F ∧ F
]

with κ = (2
√

3)−1 for the IIB SUGRA.
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Charged Rotating AdS5 Blackholes

Equations of Motion derived from the action

GAB − 6gAB =
1
2

[
FAC FB

C − 1
4

gAB FCD F
CD
]

and d∗5F = 2κF ∧ F =
1√
3

F ∧ F with F ≡ dA

General Blackhole Solution was found by
Z. W. Chong, M. Cvetic, H. Lu and C. N. Pope . Phys. Rev. Lett. 95, 161301 (2005) [arXiv:hep-th/0506029]

These are blackholes with a mass m, charge q , Angular
Velocities ω1, ω2.
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Charged Blackhole Solution I

ds2 = −
(
r2 + 1

)
∆Θdt12(

1− ω1
2
) (

1− ω2
2
) +

2(m − qω1ω2)

ρ2 − q2

ρ4

+
(dψ1 + dt1ω2)2 (r2 + ω2

2) cos2 Θ

1− ω2
2

+
(dφ1 + dt1ω1)2 (r2 + ω1

2) sin2 Θ

1− ω1
2 +

ρ2dΘ2

∆Θ

+
ρ2dr2r2

q2 − 2ω1ω2q − 2mr2 +
(
r2 + 1

) (
r2 + ω1

2
) (

r2 + ω2
2
) . . .
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Charged Blackhole Solution II

. . .− 2A√
3

(
ω1(dψ1 + dt1ω2) cos2 Θ + (dφ1 + dt1ω1)ω2 sin2 Θ

)
A = −

√
3q
ρ2

[
∆Θdt1(

1− ω1
2
) (

1− ω2
2
) − ω2(dψ1 + dt1ω2) cos2 Θ

1− ω2
2

−ω1(dφ1 + dt1ω1) sin2 Θ

1− ω1
2

]

with

ρ2 ≡ r2 + ω1
2 cos2 Θ + ω2

2 sin2 Θ

∆Θ ≡ 1− ω1
2 cos2 Θ− ω2

2 sin2 Θ
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The fluid dynamical form

ds2 = −2uµdxµ (dr + r Aνdxν)

+
[
r2gµν + u(µSν)λuλ − ωµλωλν

]
dxµdxν

+

[(
2m
ρ2 −

q2

ρ4

)
uµuν +

q
2ρ2 u(µlν)

]
dxµdxν

A =

√
3q
ρ2 uµdxµ ; ρ2 ≡ r2 +

1
2
ωαβω

αβ ; lµ ≡ εµνλσuνωλσ

Again the hydrodynamic form of the metric is surprisingly
simple ! Can be reproduced in order by order derivative
expansion - checked upto first order against the solution of

N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Dutta, R. Loganayagam and P. Surowka arXiv:0809.2596
[hep-th]

J. Erdmenger, M. Haack, M. Kaminski and A. Yarom arXiv:0809.2488 [hep-th]
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The Anomolous transport

We now turn to the stress tensor dual to these BHs

Tµν = p(gµν + 4uµuν) + 2κl(µJν)

+
1

64πGAdS

(
RαβRαµβν −

R2

12
gµν

)
Jµ = nuµ where lµ ≡ εµνλσuνωλσ ;

p ≡ m
8πGAdS

and n ≡
√

3q
8πGAdS

There is an anomolous energy momentum transport
arising from the bulk Chern-Simons coupling !
This term is crucial for the correct thermodynamics

S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla JHEP 0809, 054 (2008) [arXiv:0708.1770
[hep-th]]

R. Loganayagam



Introduction
Hydrodynamics and Weyl Covariance

Chern-Simons and Anomaly
Discussion and Conclusions

The Anomolous transport

We now turn to the stress tensor dual to these BHs

Tµν = p(gµν + 4uµuν) + 2κl(µJν)

+
1

64πGAdS

(
RαβRαµβν −

R2

12
gµν

)
Jµ = nuµ where lµ ≡ εµνλσuνωλσ ;

p ≡ m
8πGAdS

and n ≡
√

3q
8πGAdS

There is an anomolous energy momentum transport
arising from the bulk Chern-Simons coupling !
This term is crucial for the correct thermodynamics

S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla JHEP 0809, 054 (2008) [arXiv:0708.1770
[hep-th]]

R. Loganayagam



Introduction
Hydrodynamics and Weyl Covariance

Chern-Simons and Anomaly
Discussion and Conclusions

The Anomolous transport

We now turn to the stress tensor dual to these BHs

Tµν = p(gµν + 4uµuν) + 2κl(µJν)

+
1

64πGAdS

(
RαβRαµβν −

R2

12
gµν

)
Jµ = nuµ where lµ ≡ εµνλσuνωλσ ;

p ≡ m
8πGAdS

and n ≡
√

3q
8πGAdS

There is an anomolous energy momentum transport
arising from the bulk Chern-Simons coupling !
This term is crucial for the correct thermodynamics

S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla JHEP 0809, 054 (2008) [arXiv:0708.1770
[hep-th]]

R. Loganayagam



Introduction
Hydrodynamics and Weyl Covariance

Chern-Simons and Anomaly
Discussion and Conclusions

Anomolous transport II

In AdS/CFT, the bulk gauge theory induces a global
symmetry in the boundary.
A Chern-Simons coupling in the bulk translates into a
global anomaly in the boundary theory.

d∗4J = lim
r→∞

1
16πGAdS

d∗5F

= lim
r→∞

2κ
16πGAdS

F ∧ F

=
κ

8πGAdS
Fb ∧ Fb
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Anomolous transport III

The standard anomaly is turned off if F = 0. But, the
anomolous transport survives this limit.
AdS/CFT seems to encode the anomaly into the transport
in a more indirect way.
Can we understand the physics of such an encoding ?
What is the boundary physics behind the anomolous
transport ? Does it happen in other (more experimentally
relevant) models ?
In a remarkable paper

D.T. Son and P.Surowka [arXiv:0906.5044 [hep-th]]

addressed this question using entropy arguments. The
anomolous transport coefficient is given by

ξ = C
(
µ2 − 2

3
µ3n
ε+ P

)
R. Loganayagam
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We have see that fluid gravity correspondence leads us to
relatively elegant forms for various known exact solutions.
Can we exploit this to find new exact solutions which were
not constructed before ? Especially , it would be great if we
could construct new charged blackholes ...
We have discussed an example of a novel phenomena in
blackhole physics via CS terms which fluid gravity
correspondence has led us to - are there similar
phenomena hiding under known solutions ?

R. Loganayagam
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Conclusions II

Most of the basic questions regarding AdSd+1 -Hydrod
have cleared up by now

1 Metric dual to arbitrary fluid configurations(Uncharged,
Arbitrary dim.) known. Charged duals known for some
cases.

2 Many Large AdS Blackholes fit beautifully into this picture.

Conventional condensed matter intuition of equilibrium
stat.mech. (e.g. Boltzmann entropy) works well in gravity
(at least for some special blackholes).
How does gravity fit into our intuitions about
non-equilibrium/near-equilibrium physics ?
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Weyl Connections and All that - I
A Mathematical Aside

More precisely, the 1-form Aν defines a natural Weyl
Connection.
Take a spacetime manifoldM is with the conformal class
of metrics C
A torsionless connection ∇weyl is called a Weyl connection
if for every metric in the conformal class C there exists a
one form Aµ such that ∇weyl

µ gνλ = 2Aµgνλ
Define a covariant derivative Dµ = ∇weyl

µ + wAµ. Then the
above requirement becomes Dλgµν = 0
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Weyl Connections and All that - II
A Mathematical Aside

A fluid background provides an additional mathematical
structure : a unit time-like vector field with conformal
weight w = 1.
Fluid background leads to a natural Weyl-Connection
Aµ is uniquely determined by requiring that uλDλuµ = 0
and Dλuλ = 0. Back
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