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DC Conductivity/Resistivity

one of the most basic transport properties of any matter/fluid



Strange Metal / QCP
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Common belief:

Understanding linear
(in T) resistivity of
strange metal major
step towards theory
of high Tc super-
conductors.

Sign of Quantum Criticality?



Calculating Conductivities:

“Microscopic Approach”: Kubo Formula

| 1

o= lim = [ dte e ([P0, JEY0))e

Fluctuations of the Equilibrium system determine
linearized response to external source.

standard matching relation in EFT.



Shortcomings of Kubo approach:

Application of Kubo Formula requires great care
at Quantum Critical Point:  (Damle and Sachev)

Correlator C(w) 1s really C(w/T) 1n a scale invariant
theory at finite temperature.

Calculating C at T=0 automatically gives C(o0).
Kubo Formula for DC conductivity requires C(0).

Of course correct limit can be taken 1f C 1s known at
finite temperature and frequency.



Shortcomings of Kubo approach:

Unfortunately even for w/T=0 Kubo formula
produces “wrong” result. (Greene and Sondhi)

At zero T, correlator C(w) 1s really C(w/E'*) 1n a
scale invariant theory at finite temperature.

Calculating C at E=0 automatically gives C(o0).
Kubo Formula for DC conductivity requires C(0).

In order to extract correct DC conductivity of a quantum critical
point we need to work at finite E! Limits do not commute.
Missing: explicit example where this can be demonstrated.



Example: (Greene and Sondhi)

. ﬁ d=2 0
Scaling:  0(0,E) = E=F1X ( EU(EH))

e.g.. d=3 (spatial dimensions)
z=1 (relativistic theory, time and space scale the same)

- 3/2 e .
j=obL <L Invisible in linearized response!

Prediction: 6=0 at E=0=T, o—0,
but 6~E!? at ®=0=T but E finite.



An()ther Example: (Greene and Sondhi)

. ‘ i—2 5
Scaling:  +(,F)= E*F% ( = +1))

e.g.: d=2 (spatial dimensions)
z=1 (relativistic theory, time and space scale the same)

J =0l <k
o just a number. Linearized response?

Prediction: NO! The number ¢ at E=0=T, ®—0, 1s still different from
o at ®=0=T but E finite. Linearized response gives the former,
experiment the latter!



Calculating Conductivities:

“Macroscopic Approach”: Ohm’s Law

(expectation value,
AdS/CFT: normalizable)

(J*) =0cFE
(external field,
AdS/CFT: non-normalizable)

Since we are forced to work at finite electric field
In any case, we may as well extract conductivity
directly from a 1-pt function! No need to
calculate 2-pt functions.



Problem: Loss Rates.

Ward Identities 1n translationally invariant system:

0" <Tw> — Fup <Jp>
In particular (Work-Energy-Theorem):
875 <Ttt> — —E<J$> = const. !

Without Dissipation no stationary solution.
DC conductivity ill-defined!



Sondhi and Greene on Loss Rates:

power

JocL
ohmic loss < j-E oc EP*"

even without dissipation for small E (that 1s for
time scales less than 1/E'?) loss rate negligible.

Even without dissipation DC conductivity at QCP is well defined
and calculable, albeit not in linearized response!



How can one verify this picture?

Look at time dependent E:

B |

<>

At

time
expect:

t<0: no current At<t<1/E12: stationary state
0<t<At: current ramps up 1/El2<t: backreaction kicks in



—!
Roadmap for the rest of the talk:

0 Introduce dissipation. For QCP we don’t need
it, but the framework we have allows us to
calculate DC conductivities at any
temperature and carrier density.

0 Use Ohm’s law 1n AdS/CFT to calculate
conductivity. Take T to zero. What do we get?

0 Study Ohm’s law with a full time-dependent
E-field in 2+1 dimensions.



Adding Dissipation.




Add dissipation.

Typically dissipation requires breaking of
translational invariance:

Disorder

perturbatively small random disorder potential
has been introduced in AdS/CFT by Hartnoll and
Herzog.



Dissipation without disorder:

ﬁ

E

Phononbath.
~ Energy Density ~ N
B charge neutral.

Charge carriers.

Energy Density ~ N dP/dt =Phonondrag=-dP/dt

Phonondrag ~ N: backreation on phononbath
negligible up to times of order N



Two fluid model of dissipation

Neutral background (N?) Charged (N)

water/fluid ions

phononbath electrons

N=2 fundamental

N=4 SYM plasma hypermultiplets

Stationary state with finite DC conductivity for
timesup tot~N



AdS/CFT realization: single electron

electron
< Phonon cloud
| | Tension times
Tension times horizon radius
length of string. /
Mass of Quasiparticle: \ VA
Mop =m, ——— 1

e
2 (HKKKY)



AdS/CFT realization: single electron

Constant E - field
\ momentum flows
at constant rate.

(HKKKY, Gubser)



Universal Properties of

Holographic Matter

For Dq probe 1n Dp background leading density

dependent term 1s q independent.

p || Free energy | Heat capacity | Resistivity

0 || T?5 T3/ no electric field possible
1 Tl/«il T—B/«il T3/2

9 || T2/3 T-1/3 T5/3

3|1 (-dependent | 1

4 || T4 1

(Karch, Kulaxizi, Parnachev)



Finite density, no E-field.

Minkowski embeding

strings

} Backreaction }

Black hole embeding

horizon

(Kobayashi et. al; Karch and O*Bannon),



More Black hole embeddings:

Minkowski Embedding Black Hole Embedding

stable mesons
only unstable modes

15t order phase transition
| chiral condensate jumps
(Babington, Erdmenger, )
Evans, Kirsch) generic (large N, large A)

Goal: Give o for any phase that 1s described by
black hole embedding.



Need solution with E-field:

(E-field:
Fxt:E)

(radial E-field:
FI"[
finite density.

not needed
for application

Where does conductivity come from?



Born Infeld Instability.

SD7 - —f\-’rfTD7 / dgf\/—dﬁ?f (Q’a,b IF (QTTQ"!)Fan)

In flat space: ¢ — \/1 _F?

—_ F For E>1 string
clectric . o - oets ripped apart.
foree — Pair creation

ension instability.




Born Infeld Instability.

SD? — —f\-"TfTD'y / dgf\/—d.ﬁ’f- (ga,b IF (Q?TQJ)FQE))
In curved space: S =4/g g —FE :

* Effective string tension position dependent.

* At bh horizon: g, finite, g,=0

* Black hole embedding always unstable against
pair creation close to horizon!



Real solution with E-field+current:

(radial E-field:
FI"[

finite density.
not needed
for application

to QCP)

(current: F_(r)=)/r+....)

(E-field:
Fxt:E)




Reality gives unique answer:

F. and hence j (and ) are uniquely fixed by
requiring that the solution 1s real for all values
of r between horizon and infinity!

N2N2T 2
0\/ "<~ /2 + 1cos®6(z,) A :

1672 e? + 1
(D3/D7) e=—o_ g
A A NOVE



[.essons:

Two contributions add
in quadrature.



[.essons:
.._\72 _L\TQ TQ § Z 2
- fre . - N
= = ve? 4+ 1cosb(z,) ]

/N

Embedding of the brane only enters

via it’s value at one value of z. z* = horizon-
radius at small E-field, but samples all of
the geometry as we increase E.

at Z*: gtt gxx = E2



[.essons:
N2 N2T? 2
. fre e - | |
o = .= Ve +1cosb 6(z,) 4 o

|

/

All orders in the field-strength E are included.

DBI sums up all powers in E.

The e=0 version of this formula has been

reobtained in linearized response.

(Mas, Shock, Tarrio, Zoakos)



l.essons:
N2 N272 12
L f C —— - | |
g = = ve? + 1 cos’ A(z,) 2

|

Conductivity of the neutral finite temperature
plasma due to thermally created electron/hole
pairs. The cos term vanishes for heavy charge
carriers and is equal to 1 for massless charge
carriers.



[.essons:
.._\72 _L\TQ TQ § Z 2
- fre . - N
= = ve? 4+ 1cosb(z,) ]

/N

Drude-like contribution of the finite density

of charge carriers. Reproduces conductivity

due to a density d of charge carries experiencing
the drag force from the trailing string.



Can we see non-commuting limits?

For simplicity, let’s focus on d=0 for the remainder of the talk:

o =0,(E*+T")"

Linear Response: ¢ = (O OT A} O

1/2
T=0 QCP: O =0, E

Greene and Sondhi
were right!



What about D3/D5 (2+1 dim)?

For d=0: O = O-O

Correlator C(w/T, o/E'?)=C(w/T,E/T?) is
actually constant as a function of E/T? in
theories with a probe brane dual.

Independence of /T was argued by Herzog,
Kovtun, Sachdev and Son. This was a consequence

of S-duality of 4d Maxwell. S-duality also
underlies E/T? independence (O’ Bannon).



Result from static analysis.

For the generic case (including finite T, d, B, E - B,
any dimension) the zero frequency and zero E-field
limits indeed do not commute at zero temperature,
as predicted by Sondhi and Greene.

In 2+1 however conductivity 1s completely
independent of , E and T (does depend on B, d).



Response to time dependent E-field

/ ?

P .
At time

Can we find the unique real solution in the bulk
with a boundary condition at infinity corresponding
to a time-dependent electric field?



Infalling coordinate system:

ds* = 2dvdr — hdv® + r*di”

Singularity

BC: F, =E(v)

ddington
Finklaktein

Boundary

Graham Fefferman
Tube

Bifurcation
Point

How to proceed?



Minwalla et al approaches:

Hydrodynamics: Start with static case.
Promote J to slowly time varying J.
Solve (peturbatively) for corrections.

Small Perturbation: Start with vacuum.
Solve (peturbatively) using the smallness
of the external source as expansion parameter.



Let the computer do 1t:

0 :

I4

(% (Chesler and Yaffe)



Flavor Branes.

For flavor branes (dual to a 2+1 CFT) we can
just write down the full non-linear solution to
arbitrary E(t):

P, Py — | (a) (all other components vanish)

Calculate current from this:

(J:r (ﬂ) =okb (f) (Instantaneous response!!)



Interpretation?

Expected:  (j () = /dTJ(T)E(t — )

Memory. Only constrained by causality (Kramers/
Kronig relations).

Find: o(t) ~ o(7)



Interpretation?

Expected:  (j () = /dTJ(T)E(t — )

Memory. Only constrained by causality (Kramers/
Kronig relations).

. N
Flnd' O-(T) O(T) We knew that!
(It 1s st1ll remarkable
that one can so easily find
the full time dependent bulk

solution.)

So: o(w) 1s w-independent



Ener gy 10 SS ? (Karch, O’Bannon, Thompson)

The energy and momentum densities
of the flavor sector can be obtained from
the bulk w/o having to include backreaction.

(Total energy), . = (Total energy )youndary

here: g = / dty(t)E(t) correct Ohmic heating;
FINITE!



Time dependent solution in 3+1

- [ Fpor + hrF, A [ Fppr
aﬁ“ ‘ ~ du >
() ()

No longer simple analytic solution.

E(t) = const.: ] = O, E3'?

small E, small
time derivative:

] =0, (E+E3/2)



Result from dynamical analysis.

Dynamical analysis supports picture of
Sondhi and Greene that postulates an intermediate
stationary state for QCP up to t~1/E!2.

In 2+1 analytic solution for any E(t) can be found.
Confirms expecation of frequency independence.

Approximate results in 3+1 available. Hopefully
more can be learned.



Conclusion.

Flavor branes are a great laboratory
to explore interesting fluids and
condensed matter systems.



