Dynamical Black Holes
 \& Expanding Plasmas

Veronika Hubeny

Durham University
ACS workshop on Fluid-Gravity Correspondence, Munich, Sep.3, 2009
based on work w/P. Figueras, M. Rangamani, \& S. Ross (arXiv:0902.4696)

OUTLINE

- Motivation \& Background
- Conformal Solíton flow
- Boost-invaríant (Bjorken) flow
- Open issues: entropy dual?

Motivation

- Tíme-dependence in AdS/CFT
- Fluid/Gravity correspondence far from (local) equilibrium
- Holographic description of entropy in dynamical setting

Fluid/gravity correspondence

- Long-wavelength dynamics of interacting QFT (Aluid dynamics) = gravitational dynamics of asymp. AdS black hole IBhattachargya, , v, Minwalla, Rangamami]
- If geometry settles down, \exists regular event horizon; \& its area \rightsquigarrow entropy current in CFT [Bhattacharyya, VH, Loganayagam, Mandal, Minwalla, Moríta, Rangamaní, Reall]
-What if the geometry does not settle down?

OUTLINE

- Motivation \& Background
- Conformal Soliton flow ($\approx^{\circ} \mathrm{CS}$)
- CS construction \& geometry
- CS event horízon
- CS apparent horizon
- Boost-ínvaríant (Bjorken) flow
- Open issues: entropy dual?

Conformal Soliton flow

- CS geometry = 'Poincare patch' of Schw-AdS black hole
- e.g. in 3D, constructed by applying the coord. transf. (global AdS \rightsquigarrow Poincare AdS)

$$
\begin{equation*}
d s^{2}=-\left(r^{2}+1\right) d \tau^{2}+\frac{d r^{2}}{r^{2}+1}+r^{2} d \varphi^{2} \quad \rightsquigarrow \quad d s^{2}=\frac{-d t^{2}+d z^{2}+d x^{2}}{z^{2}} \tag{details}
\end{equation*}
$$

$\operatorname{tOBTZ:~} d s^{2}=-\left(r^{2}-r_{+}^{2}\right) d \tau^{2}+\frac{d r^{2}}{r^{2}-r_{+}^{2}}+r^{2} d \varphi^{2}$

- bulk coord transf \rightsquigarrow conformal transf. on bdy
- resultant metric $g_{\mu \nu}(t, x, z)$ looks dynamical.

Conformal Soliton geometry

- Black hole enters through past Poíncare edge
- and leaves through future Poíncare edge
- but geometry is timereversal invaríant.

Conformal Soliton on bdy

- Static Schwarzschild-Ads black hole corresponds a static ideal fluid in the bdy CFT;
- whereas the CS flow describes dynamically contracting \& expanding plasma.
- Ideal fluid, no entropy production
- Total entropy is invariant under conformal transformation (and given by the area of the event horizon of the BH in global coordinates)

CS event horizon

- Recall: event horizon \mathcal{H}^{+}is defined as the boundary of the past of the future null infinity, $\mathcal{H}^{+} \equiv \partial I^{-}\left[\mathcal{I}^{+}\right]$
- hence it is generated by null geodesics.
- For the CS spacetime, $\mathcal{I}_{C S}^{+}$is a subset of \mathcal{I}^{+}.
- Hence the CS event horizon $\mathcal{H}_{C S}^{+}$does NOT coincide with the global event horizon \mathcal{H}^{+}.
- It is easy to find $\mathcal{H}_{C S}^{+}$explicitly...

CS event horizon

- $\mathcal{H}_{C S}^{+} \equiv \partial I^{-}\left[\mathcal{I}_{C S}^{+}\right]=\partial I^{-}[P]$
- generated by null geodesics ending at P

CS event horizon

- $\mathcal{H}_{C S}^{+} \equiv \partial I^{-}\left[\mathcal{I}_{C S}^{+}\right]=\partial I^{-}[P]$
- generated by null geodesics ending at P
- cut off at curve of caustics at $\varphi=\pi$

Note: $\mathcal{H}_{C S}^{+}$interpolates between global event horizon at early times and Poincare horizon at late times.

Area of CS event horizon

- CS event horizon $\mathcal{H}_{C S}^{+}$grows in tíme.
- $\mathcal{H}_{C S}^{+}$touches the boundary at $t=0$.
- Proper area at constant Poíncare tíme slice diverges at $t=0$.
- Hence event horizon area does NOT correctly reproduce the CFT entropy!

Apparent horizon

- Recall: given a foliation of a spacetime, a trapped surface \mathcal{S} is a closed surface with negative divergence θ for both outgoing and ingoing null congruence normal to \mathcal{S}.
- The apparent horizon is defined as the boundary of the trapped surfaces, or outermost marginally trapped surface.
- We will consider this as co-dím. 1 tube evolving in time
- Technically speaking, this tube is called isolated horizon if it is null, and dynamical horizon if spacelike.

Foliation-dependence of AH

- In general dynamical spacetime admitting trapped surfaces, the location of apparent horizon depends on the choice of foliations.
[cf. Wald \& lyer]
- On the other hand, if the spacetime admits a Killing horizon, then this Killing horizon is an apparent horizon for any foliation which contains full slices of the horizon. Proof:
- Null normals to any cross-sectional slice \mathcal{S} of the horizon coincide with horizon generators.
- Expansion vanishes $\rightsquigarrow \mathcal{S}$ is marginally trapped surface
- Since no trapped surfaces outside event horizon, \mathcal{S} is the outer-most marginally trapped surface \Longrightarrow apparent horizon.

CS apparent horizon

- CS geometry admits a Killing horizon: requisite Killing field is simply $\left(\frac{\partial}{\partial \tau}\right)^{a}$ with $\tau=$ global time (hence same as global Schw-AdS event horizon)
- \Rightarrow for any foliation this Killing horizon at $r=r_{+}$ is an apparent horizon
- Hence CS apparent horizon has area which stays constant in time, and does correctly reproduce CFT entropy.

Summary for CS geometry

- Poíncare patch of Schw-AdS: looks highly dynamical (even though secretly static).
- Event horizon of CS does not coincide with global event horizon, and its area diverges at finite time.
- Apparent horizon of CS does coincide with global event horizon, and has constant area.

OUTLINE

- Motivation \& Background
- Conformal Solíton flow ($\approx^{\circ} \mathrm{CS}$)
- Boost-invariant (Bjorken) flow ($={ }^{\prime} \mathrm{BF}{ }^{\prime}$)
- Open issues: entropy dual?

Bjorken flow geometry

- Proposed to describe QGP at RHIC
fluid on $\mathbb{R}^{4} \quad d s^{2}=-d \tau^{2}+\tau^{2} d y^{2}+d x_{\perp}^{2}$
- Boost invariance along collision direction all physical quantities depend only on τ.
- Exact dual geometry not known; but can expand around late proper tímes (metric functions of τ \& radial coord r) [Jank \& Peschansk]
- Describes a dynamically receding black hole in bulk, whose temperature $T \sim \tau^{-1 / 3}$

Horizons in BF spacetime

- Apparent horizon (for constant τ foliation) found previously.
- Event horizon can be obtained by analysing radial null geodesics (find the outer-most one which reaches \mathcal{I}^{+}at late time $\tau \rightarrow \infty$)
- This is carried out by systematic expansion:

$$
r_{+}^{(2)}(\tau)=\tau^{-\frac{1}{3}}-\frac{1}{2} \tau^{-1}+\frac{12+3 \pi-4 \ln 2}{72} \tau^{-\frac{5}{3}}+\mathcal{O}\left(\tau^{-7 / 3}\right)
$$

Horizons in BF spacetime

Summary for BF geometry

- At 2nd order, EH lies (just) outside AH
- metric is regular everywhere on \& outside EH
- Curiosity @ Oth order metric: AH is outside EH (But does not solve Eínsteín eqns at higher orders and violates energy conditions.)

OUTLINE

- Motivation \& Background
- Conformal Soliton flow ($\approx^{\circ} \mathrm{CS}$)
- Boost-invariant (Bjorken) flow ($={ }^{\prime} B F^{\prime}$)
- Summary \& open issues: entropy dual?

Dual of CFT entropy?

- We've seen:
- in original fluid/gravity framework, and for the BF geom, CFT entropy is given by area of $E H \approx A H$
- in CS geom, entropy given by area of $A H \neq E H$ CFT entropy is NOT always reproduced by EH area.
- In retrospect, EH is too teleological to give entropy (since S is defined indep. of future evolution)
- Natural guess: entropy given by AH area ??

Dual of CFT entropy?

- BUT: this cannot hold universally!
- AH is not always well-defined: it can jump discontínuously
- AH is foliation-dependent for general dynamical backgrounds
- Possible resolution: entropy is well-defined only when temporal evolution is sufficiently slow.
- Note: contrast with entanglement entropy...
- Under such condítions AH evolves smoothly.

Dual of CFT entropy?

- BUT: there is still a problem with foliation dep.:
- Consider collapsed star in AdS which settles down at late tímes.
- Naively: CFT entropy @ late times given by late time EH area.
- BUT: \exists bulk foliations admitting no trapped surfaces even at arbitrarily late times!
- Other possible resolutions:
- CFT prescribes a natural/preferred foliation (but no real evidence)
- Only in static (equilibrium) configurations does the bulk dual of CFT entropy correspond to a geometrical object in the bulk.

Coordinate tranformation

$z=\frac{1}{\sqrt{r^{2}+1} \cos \tau+r \cos \varphi}$,
$t=\frac{\sqrt{r^{2}+1} \sin \tau}{\sqrt{r^{2}+1} \cos \tau+r \cos \varphi}$,
$x=\frac{r \sin \varphi}{\sqrt{r^{2}+1} \cos \tau+r \cos \varphi}$

CS event horizon - details

- geodesic equations ($l=$ ang.mom./energy, $\lambda=$ affine parameter):

$$
\left(\frac{d r}{d \lambda}\right)^{2}=1-\ell^{2}+\frac{\ell^{2} r_{+}^{2}}{r^{2}}, \quad \frac{d \tau}{d \lambda}=\frac{1}{r^{2}-r_{+}^{2}}, \quad \frac{d \varphi}{d \lambda}=\frac{\ell}{r^{2}}
$$

- surface of event horizon $\mathcal{H}_{C S}^{+}$is parameterized by:

$$
\begin{aligned}
r(\lambda, \ell)^{2} & =\left(1-\ell^{2}\right) \lambda^{2}-\frac{\ell^{2} r_{+}^{2}}{1-\ell^{2}} \\
\tau(\lambda, \ell) & =\pi-\frac{1}{r_{+}} \operatorname{arccoth}\left(\frac{1-\ell^{2}}{r_{+}} \lambda\right) \\
\varphi(\lambda, \ell) & =-\frac{1}{r_{+}} \operatorname{arccoth}\left(\frac{1-\ell^{2}}{\ell r_{+}} \lambda\right)
\end{aligned}
$$

- induced metric on horizon:

$$
d s_{\text {ind }}^{2}=\frac{d \ell^{2}}{\left(1-\ell^{2}\right)^{2}}
$$

event horizon area - details

- CS event horizon area in terms of ang.mom.

$$
\mathcal{A}=2 \int_{0}^{\ell_{\max }} \frac{d \ell}{1-\ell^{2}}=2 \operatorname{arctanh} \ell_{\max }
$$

- $\ell_{\max }$ is determined by position of caustics

$$
\ell_{\max }=\frac{r \sinh \left(\pi r_{+}\right)}{\sqrt{r_{+}^{2}+r^{2} \sinh ^{2}\left(\pi r_{+}\right)}}
$$

- Area diverges when horizon touches dy $r \rightarrow \infty$

$$
\mathcal{A}=2 \operatorname{arctanh}\left(\frac{r \sinh \left(\pi r_{+}\right)}{\sqrt{r_{+}^{2}+r^{2} \sinh ^{2}\left(\pi r_{+}\right)}}\right)
$$

Trapped surface

- For a closed surface \mathcal{S} the divergence $\theta_{ \pm}$of outgoing/ ingoing null congruence is defined as the fractional change in area along wavefronts of outgoing/ingoing null geodesics emanating perpendicularly to \mathcal{S} :

For area A along 'wavefronts' at constant λ, expansion θ is given by

$$
\theta=\frac{1}{A} \frac{d A}{d \lambda}
$$

- Trapped surface has both $\theta_{-}<0$ and $\theta_{+}<0$.

