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Idea

• heavy ion collisions @ RHIC - strongly coupled quark-gluon
plasma ( QGP )

• fully dynamical process - need for a new tool

• idea: exchange

QCD in favor of N = 4 SYM

and use the gravity dual

• there are differences

- SUSY
- conformal symmetry at the quantum level
- no confinement...

• ... but not very important at high temperature



Motivation

• RHIC suggests that QGP behaves as an almost perfect fluid

• there has been an enormous progress in understanding

QGP hydrodynamics with the AdS/CFT

• can the AdS/CFT be used to shed light on

far from equilibrium part of the QGP dynamics?

• maybe, but only at λ� 1!

• let’s focus on

the boost-invariant flow

and use the AdS/CFT to grab some non-equilibrium physics.



Boost-invariant dynamics

• one-dimensional expansion along the collision axis x1

• natural coordinates

- proper time τ and rapidity y

- x0 = τ cosh y , x1 = τ sinh y

• boost invariance (no rapidity dependence)



AdS/CFT correspondence

Gauge-gravity duality is an equivalence between

N = 4 Supersymmetric
Yang-Mills in R1,3

Superstrings in curved
AdS5×S5 10D spacetime

- strong coupling - (super)gravity regime

- non-perturbative results - classical behavior

- gauge theory operators - supergravity fields

AdS/CFT dictionary relates
energy-momentum tensor of N = 4 SYM to 5D AdS metric



Holographic reconstruction of spacetime

• AdS5 metric in Fefferman-Graham gauge takes the form

ds2 = mAB dxAdxB =
dz2 + gµν dxµdxν

z2

where z = 0 corresponds to the boundary of AdS

• Einstein equations

GAB = RAB −
1

2
R ·mAB − 6 mAB = 0

can be solved near boundary given the boundary metric (here
assumed to be R1,3) and any traceless and conserved 〈Tµν〉

gµν = g (0)
µν

{
= ηµν

}
+z4g (4)

µν

{
=

2π2

N2
c

〈Tµν〉
}

+g (6)
µν (〈Tαβ〉) z6+. . .

• however most 〈Tµν〉 will lead to singularities in the bulk



Gravity dual to the boost-invariant flow

• the energy-momentum tensor is specified by ε (τ)

Tµν = diag
{
ε (τ) ,− 1

τ2
ε (τ)− 1

τ
ε′ (τ) , ε (τ) +

1

2
τε′ (τ)⊥

}
• this suggests the metric Ansatz for the gravity dual

ds2 =
−ea(τ,z)dτ2 + τ2eb(τ,z)dy2 + ec(τ,z)dx2

⊥ + dz2

z2

• Einstein equations

GAB = RAB −
1

2
R ·mAB − 6 mAB = 0

cannot be solved exactly (→ numerics)

• however there are two regimes

τ � 1 or τ ≈ 0

where analytic calculations can be done



τ � 1 regime – hydrodynamics



Reconstructing the space-time near the boundary – redux

• generic ε (τ) will NOT lead to smooth geometry

• this cannot be seen within the Fefferman-Graham expansion

• let’s focus then on proper time

τ � 1 or τ ≈ 0

and solve Einstein eqns exactly in z but approximately in τ

• to begin with let’s assume that for τ →∞

ε (τ) ∼ 1

τ s

and analyze the structure of the z = 0 expansion to resum it

• at this level there are no constraints* on s

(* positivity of energy density in any frame forces 0 < s < 4)



Large times and the scaling variable [hep-th/0512162]

• resummation involves choosing at each order in z

a (τ, z) = −ε(τ) · z4 +

{
−ε
′(τ)

4τ
− ε′′(τ)

12

}
· z6 + . . .

the leading (at τ � 1) contribution given the energy density

ε (τ) ∼ 1

τ s

• this amounts to introduction of scaling variable v = z/τ s/4

• Einstein equations reduce then to a set of solvable ODEs for

a (τ, z) = a0

(
z/τ s/4

)
, . . . for τ →∞

• RµνρσRµνρσ evaluated on the scaling solution is singular for

s 6= 4/3 (that scaling corresponds to perfect fluid hydro )



τ →∞ metric and the fluid/gravity correspondence

• τ →∞ metric in Fefferman-Graham coordinates looks like

ds2 = 1
z2

{
−(1− 1

3
z4τ−4/3)

2

1+ 1
3
z4τ−4/3 dτ2 +

(
1 + 1

3z4τ−4/3
) (
τ2dy2 + dx2

⊥
)

+ dz2

}
• it looks like a boosted and dilated black brane

ds2 = 1
z2

{
−(1−z4λ4)

2

1+z4λ4 uµuνdxµdxν +
(
1 + z4λ4

)
(ηµν + uµuν) dxµdxν + dz2

}
with boost and dilation parameters being uµ = 1 · [∂τ ]µ and
λ ∼ T ∼ τ−1/3

• at the same time it describes perfect fluid hydrodynamics of

boost-invariant plasma ε (τ) ∼ 1/τ4/3

• this is of course the key observation of the fluid/gravity duality



Hydrodynamics from ground up

Basics

• long-wavelength effective theory

• vast reduction of # degrees of freedom

- velocity uµ (x) constrained by uµ uµ = −1

- temperature T (x)

• slow changes → gradient expansion

• expansion parameter 1
L·T

(T is temperature, L is characteristic length-scale)

Gradient expansion

• definition of the energy-momentum tensor

Tµν = ε·uµuν+p·∆µν−η·
(

∆µλ∇λuν + ∆νλ∇λuµ −
2

3
∆µν∇λuλ

)
+. . .

• EOMs ∇µTµν = 0 + equation of state (e.g. ε = 3p)



Hydrodynamics and ε (τ)

Perfect hydrodynamics
• in conformal boost invariant hydrodynamics

ε (τ) ∼ T (τ)4 , uµ = 1 · [∂τ ]µ , ηµν = diag
{
−1, τ2, 1, 1

}
• perfect hydro (∇µTµν = 0 for Tµν = ε · uµuν + p ·∆µν) gives

∂τ ε (τ) = −ε (τ) + p (τ)

τ

• which together with ε = 3p leads to ε ∼ 1
τ4/3

Gradient expansion

• remainder: in hydro the expansion parameter is 1
L·T

• in this setting T ∼ τ−1/3, L−1 ∼ ∇u = τ−1, so 1
L·T ∼

1
τ2/3

• one should expect the general structure of ε (τ) of the form

ε (τ) ∼ 1

τ4/3

{
#0 +

1

τ2/3
#1 +

1

τ4/3
#2 + . . .

}



Boost-invariant flow and gradient expansion

Reminder:

ds2 =
−ea(τ,z)dτ2 + τ2eb(τ,z)dy2 + ec(τ,z)dx2

⊥ + dz2

z2

Gravitational gradient expansion:

a (τ, z) = a0

( z

τ1/3

)
+

1

τ2/3
a1

( z

τ1/3

)
+

1

τ4/3
a2

( z

τ1/3

)
+ . . .

b (τ, z) = b0

( z

τ1/3

)
+

1

τ2/3
b1

( z

τ1/3

)
+

1

τ4/3
b2

( z

τ1/3

)
+ . . .

c (τ, z) = c0

( z

τ1/3

)
+

1

τ2/3
c1

( z

τ1/3

)
+

1

τ4/3
c2

( z

τ1/3

)
+ . . .

R2(τ, z) = R2
0(

z

τ1/3
) +

1

τ2/3
R2

1(
z

τ1/3
) +

1

τ4/3
R2

2(
z

τ1/3
) + . . .

This is AdS counterpart of hydrodynamics

ε(τ) =

(
N2

c

2π2

)
1

τ4/3

{
1−2η0

1

τ2/3
+
[3

2
η2

0−
2

3
(η0τ

0
Π−λ0

1)
] 1

τ4/3
+· · ·

}



Fefferman-Graham vs Eddington-Finkelstein

• in [hep-th/0703243] it was found that

RµνρσRµνρσ = REGULAR+
1

τ2

{
# · log

(
31/4 − v

)
+ . . .

}
+. . .

• this strange logarithmic singularity is not present in

Eddington-Finkelstein coordinates

ds2 = 2drdτ̃−r2Ã (τ̃ , r) dτ̃2+(1 + r τ̃)2 e b̃(τ̃ ,r)dy2+r2e b̃(τ̃ ,r)dx2
⊥

• it turns out that there is a singular coordinate transformation

τ̃ (τ, z) = τ

{
1 +

1

τ2/3
τ̃1

( z

τ1/3

)
+

1

τ4/3
τ̃2

( z

τ1/3

)
+ . . .

}

r (τ, z) =
1

z

{
1 +

1

τ2/3
r1

( z

τ1/3

)
+

1

τ4/3
r2

( z

τ1/3

)
+ . . .

}
given order by order in τ−2/3 (see 0805.3774 [hep-th])



τ ≈ 0 regime – dynamics far from equilibrium



Scaling variable doesn’t work @ τ ≈ 0

• let’s start with ε(τ) ∼ 1
τ s and solve GAB near the boundary

a (τ, z) = ã0 (τ) z4 + ã2 (τ) z6 + ã4 (τ) z8 + . . .

• for τ � 1 certain terms dominate at each z4+2k and picking
them gives

a (τ, z) = f
( z

τ s/4

)
• for τ ≈ 0 other terms dominate leading to

a (τ, z) =
z4

τ s
· f̃
(z

τ

)
• arXiv:0705.1234 argued that s has to be 0 in this case

• this is wrong , since each term in this scaling expansion is

multiplied by s, thus vanishes identically



Initial conditions and early times expansion of ε (τ)

• warp factors can be solved near the boundary given ε (τ)

a (τ, z) = −ε(τ) · z4 +

{
−ε
′(τ)

4τ
− ε′′(τ)

12

}
· z6 + . . .

• for ε (τ) = ε0 + ε1τ + ε2τ
2 + ε3τ

3 + ε4τ
4 + ε5τ

5 + . . .

all ε2k+1 must vanish , otherwise a (0, z)→∞
• setting τ to zero in a (τ, z) for

ε (τ) = ε0 + ε2τ
2 + ε4τ

4 + . . .

gives

a (0, z) = a0 (z) = ε0 · z4 +
2

3
ε2 · z6 +

(
ε4

2
− ε2

0

6

)
· z8 + . . .

• it defines map between initial profiles in the bulk and ε (τ)



Geometry @ τ ≈ 0

• warp factors a, b and c (τ, z) have τ ≈ 0 expansion

a (τ, z) = a0 (z) + τ2a2 (z) + τ4a4 (z) . . .

• both Gτz and Gzz at τ = 0 are constraints equations

• Gτz forces b0 (z) = a0 (z) whereas Gzz takes the form

v ′ (z) + w ′ (z) + 2 z
{

v (z)2 + w (z)2
}

= 0

where v (z) = 1
4z a′0 (z) and w (z) = 1

4z c ′0 (z)

• this equation does not have any regular solution∫ ∞
0

(v ′+w ′) dz+2

∫ ∞
0

(v2+w2)z dz =

∫ ∞
0

(v2+w2)z dz = 0

what is then the allowed set of initial data?



Allowed initial conditions

• contraint equation

v ′ (z) + w ′ (z) + 2 z
{

v (z)2 + w (z)2
}

= 0

can be solved using v+ = −w − v and v− = w − v

v−
(
u = z2

)
=
√

2v ′+ (u)− v+ (u)2

• the regularity of RABCDRABCD @ τ = 0 fixes v+ (u) to be

v+ (u) =
2ε0 u0

3
· u3

u0 − u
f (u)

where f (0) = 1, f (u0) = 3
2u4

0ε0
and otherwise just regular

• the space of allowed initial data is parametrized by

all v+ (u) satisfying above conditions



Resummation of the energy density

• energy density power series @ τ = 0

ε (τ) = ε0 + ε2τ
2 + . . .+ ε2Ncutτ

2Ncut + . . .

has a finite radius of convergence and thus

a resummation is needed

• presumably the simplest can be given by Pade approximation

εapprox (τ)3 =
ε

(0)
U + ε

(2)
U τ2 + . . .+ ε

(Ncut−2)
U τNcut−2

ε
(0)
D + ε

(2)
D τ2 + . . .+ ε

(Ncut−2)
D τNcut+2

which uses the uniqueness of the asymptotic behavior

ε ∼ 1

τ4/3



Approach to local equilibrium

• nice example of allowed initial profile is given by

v+ (u) =
π

2
tan
(π

2
u
)
− π

2
tanh

(π
2
u
)

leading to the following ε (τ) and ∆p (τ) = 1− p‖(τ)

p⊥(τ)



Summary

Results:

• AdS/CFT is indispensable not only near equilibrium

• early time dynamics is not governed by the scaling limit

• gravity dual at τ = 0 sets ε (τ) = ε0 + ε2 · τ2 + . . .

• simple resummation recovers reach dynamics

Open questions:

• numerics starting from some initial data

• towards colliding shock-waves


