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Motivation:

⇒ There was been many studies were the gauge/string theory correspondence framework

was been used to extract transport coefficients of strongly coupled gauge theory plasma.

however...

⇒ real QCD is not in any one of the models studied

(it is possible to reach QCD as a particular limit in some of the models, but the price to pay is too big: the

truncation of the full string theory to a supergravity sector is inconsistent)

thus...

⇒ one attempts to discover common/universal features of hydrodynamics of strongly coupled gauge

theories (by looking at the explicit string theory models as well as phenomenological models) and

hope...

⇒ that QCD is in the universality class of the models studied
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Examples:

the shear viscosity ratio
η

s
=

1

4π

the bulk viscosity ratio

ζ

η
≥ 2

(

1

3
− c2

s

)

, c2
s =

∂P
∂E

⇒ there is one other important transport coefficient, the (effective) relaxation time τeff . Can

some universal equality/inequality be established for it?
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Now my real motivation:

⇒ The was an interesting note (arXiv:0907.2262) co-authored by one of the leaders in

hydrodynamic simulations of sQGP, Ulrich Heinz. They point out that shear viscosity

suppresses the elliptic flow in RHIC collisions, but so does the bulk viscosity. The reason for

this is very simple. In the relevant hydro simulations the combination of the transport

coefficient that enters is

ηCFT → ηeff = η

(

1 +
3ζ

4η

)

⇒Now, bulk viscosity can be rather large for off-center RHIC collisions. Let me explain why.

We start with the lattice data for the QCD equation of state:
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Figure 1: QCD thermodynamics from lattice; F.Karsch and E.Laermann, hep-lat/0305025. The

RHIC arrow corresponds to T
Tc

∼ 1.8. However to off-central collisions it can drop to T
Tc

∼
1.4 (∼ 240 MeV).

⇒ The message: we are rather close to a phase transition5



⇒ We need to look at the holographic plasma model, that shares similarities with the QCD

equation of state, and try to extract the information from that model about the bulk viscosity

⇒ My favorite model for such analysis is the N = 2∗ plasma. You should think of it as a

particular mass deformation of the N = 4 SU(N) plasma. The mass parameter, m, is

responsible for a nontrivial phase transition in this model. The phase transition that occurs in

this model is in the universality class of the mean field tricritical point,

cV ∼ |1 − Tc/T |−1/2
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Figure 2: Equation of state of the mass deformed N = 4 gauge theory plasma. Note that
mb

Tc
≈ 2.29
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⇒ What is the bulk viscosity near the phase transition in this model?

5 10 15 20 25

1

2

3

4

5

6

− ln

“

T
Tc

− 1

”

ζ
η

Figure 3: Ratio of viscosities ζ
η in N = 2∗ gauge theory plasma.

Note:
ζ

η

∣

∣

∣

∣

T=Tc

= 6.65(3) , or
ζ

s

∣

∣

∣

∣

T=Tc

= 0.52(9)

which is close to the peak value ζ
s ∼ 0.7 extracted from lattice QCD by H.Myers.
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The message so for:

the RHIC collision occurs near the QCD phase transition

the bulk viscosity can be rather substantial, and noticeably correct the conformal

hydrodynamics; in the holographic N = 2∗ model at the phase transition

η → ηeff ≈ η × 6

⇒ In their paper Song and Heinz take the idea of ’closeness’ to the phase transition seriously,

and thus propose that one should expect as well ‘”critical slow down”, resulting in large

relaxation time. This would lead to the strong memory effects (the sensitivity to the initial

conditions). They run a bunch of hydrodynamic simulations to illustrate the point by playing

with the value of the relaxation time.

My question: how does relaxation time occur in holographic models? Is it indeed enhanced

near the phase transitions?
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Outline of the talk:

• Why should we care about the relaxation time

fundamental perspective

practical perspective

• Holographic bound on τeff in supergravity approximation

τeff in Kaluza-Klein reduction of a higher dimensional CFT hydrodynamics

τeff in the vicinity of a 4d fixed point deformed by relevant operators

τeff in N = 2∗ plasma

τeff in phenomenological models of gauge/gravity correspondence

• τeff at weak coupling

• Beyond supergravity approximation for τeff

finite coupling correction in N = 4 plasma

effective relaxation time in Gauss-Bonnet plasma

• τeff near the phase transition

• Conclusions and further directions
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fundamental perspective:

Causality constraints on the transport coefficients of the hydrodynamics

Hydrodynamics is an effective theory describing near-equilibrium phenomena in (relativistic)

QFT:

∇νT µν = 0

The stress-energy tensor includes both an equilibrium part (E and P terms) and a dissipative

part Πµν

T µν = Euµuν + P∆µν + Πµν .

where uµ is a local 4-velocity of the fluid and

∆µν = gµν + uµuν , Πµ
νuν = 0 , uµνµ = 0 ,

Effective hydrodynamic description is equivalent to a derivative expansion of Πµν in local

velocity gradients
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Thus, to linear order in the derivative expansion

Πµν = Πµν
1 (η, ζ) = −ησµν − ζ∆µν(∇αuα)

(σµν ∝ ∇νuµ) with {η, ζ} being the viscosity coefficients.

To simplify further discussion we consider only CFT’s from now on: ζ = 0 , E = 3P . To

second order in the derivative expansion

Πµν = Πµν
1 (η) + Πµν

2 (η, τπ, κ, λ1, λ2, λ3)

= −ησµν − ητπ

[

〈u · ∇σµν〉 +
1

3
(∇ · u)σµν

]

+ non − linear terms + · · ·

⇒ It is straightforward to study dispersion relation of the linearized fluctuations in above

theory
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The dispersion relation of the shear channel fluctuations is given by

0 = −w
2 τπT − iw

2π
+ k

2 η

s
,

where w = ω/(2πT ) and k = k/(2πT ). Now the speed with which a wave-front

propagates out from a discontinuity in any initial data is governed by

lim
|k|→∞

Re(w)

k

∣

∣

∣

∣

[shear]

=

√

η

s τΠT
≡ vfront

[shear] .

Hence causality in this channel imposes the restriction

τπT ≥ η

s
.

Notice: the first-order hydrodynamics is recovered in the limit τπ → 0, so causality is always

violated at this order in the derivative truncation

Similar considerations in the sound channel imposes the (more stringent) restriction

τπT ≥ 2
η

s
.
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So, the relaxation time is required to restore causality of relativistic effective theory of

near-equilibrium dynamics, i.e., the hydrodynamics.

⇒ One might worry that the causality constraint on the τΠ is obtained from the regime

outside the validity of the effective hydrodynamic approximation (derivative expansion is not

valid in this regime). In general, the causality of the effective hydrodynamics depends on the

microscopic parameters of the theory — in the CFT case, the central charges of the theory. In

some models it can be shown what once the full non-equilibrium theory is causal, it’s

second-order truncated (in the velocity gradients) hydrodynamic description is causal as

explained above.

practical perspective:

⇒ Even though first-order hydrodynamics is self-consistent in its regime of applicability, the

numerical hydrodynamic simulations are typically unstable. Stability is restored with the

introduction of the relaxation time. In other words: the breakdown of first-order hydro arises

from the modes outside its regime of applicability but the computer does not know it!
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Holographic bound in τeff in supergravity approximation

⇒ How do we define the effective relaxation time?

The causal viscous relativistic hydrodynamics has many second order transport coefficients:

in CFT cases - 5

in non-CFT cases (see Romatschke) - 13

In practical simulations one usually introduces a single second-order transport coefficient (in

order to limit the phenomenological parameter space). As a result, different simulations ’turn

on’ different combinations of the second order transport coefficients. In order to relate

different hydrodynamic models, we introduce τeff , defined from the sound wave dispersion

relation as follows

ω = ±csk − iΓk2 ± Γ

cs

(

c2
sτeff − Γ

2

)

k3 + O(k4) ,

where cs is the speed of the sound waves (obtained from the equation of state), and Γ is the

sound wave attenuation (determined by the shear and the bulk viscosities)

c2
s =

∂P
∂E , Γ =

(

2

3

η

E + P +
1

2

ζ

E + P

)

.
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As defined, τeff is

the relaxation time of Müller-Israel-Stewart hydrodynamics

it coincides with τπ

in general non-conformal hydrodynamics of Romatschke

τeff =
τπ + 3

4
ζ
η τΠ

1 + 3
4

ζ
η

.

The Claim:

τeffT ≥ τN=4
π T =

2 − ln 2

2π
≡ τ∗

πT

In what follows I present various evidence for the above claim in the holographic setting, as

well as for weak coupling
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⇒ The simplest way to produce non-conformal hydrodynamics is to start with d > 4-dim

conformal hydrodynamics, and reduce it to 4-dim on a flat k-torus.

In d-dim CFT:

T µν = E(d)uµuν + P(d)△µν + Πµν , △µν = gµν + uµuν

Πµν = −η(d) σµν + · · ·
where

σµν = △µα△νβ

[

∇αuβ + ∇βuα

]

− 2

d − 1
△µν△αβ ∇αuβ

To do the KK reduction of the CFT hydro, all we have to do is to assume

uµ =
(

vi,~0
)

, i = 1 · · · (d − k)

while keeping all the transport coefficients unchanged.

The result now has to be interpreted in the framework of Romatschke hydrodynamics:

Πij = πij + △ijΠ , Π = −ζ(∇v) + · · ·
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If

{c(d)
s , Γ(d), τ (d)

π }
are the hydrodynamic coefficients of the d-dim CFT plasma, then

cs = c(d)
s =

1√
d − 1

, Γ = Γ(d) , τeff = τ (d)
π

Using

Γ(d) =
d − 2

d − 1

η(d)

E(d) + P(d)

and the holographic universality for the shear viscosity

η

s
=

η(d)

s(d)
=

1

4π

we find
ζ

η
= 2

(

1

3
− c2

s

)

Similar relaxations exist for the second order coefficients, for examples

τπ = τΠ = τ (d)
π
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What is happening with the relaxation time bound?

Haack, Yarom, · · ·
τ (d)
π T =

1

4π

[

d

2
+ H 2

d

]

where

Hn =

∫ 1

0

dx
1 − xn

1 − x

is the harmonic number.

The relaxation time bound for these models is simply the statement that

1

4π

[

d

2
+ H 2

d

]

≥ 2 − ln 2

2π
, d ≥ 4
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⇒ τeff in the vicinity of the fixed point

Consider an irrelevant deformation of a CFT in the UV:

LCFT → L = LCFT + λp O(p) , dim
[

O(p)
]

= p < 4

and λ(p) is a coupling. For large temperatures T ,

T ≫ (λp)
1/(4−p) ,

above deformation is small, and can be treated perturbatively.

On the gravity side, above CFT deformation is dual to turning on a minimally coupled scalar of

mass m in the AdS background. If L is the AdS radius,

p(4 − p) = −(mL)2

The non-normalizable mode of the scalar field (in appropriate normalization) should be set to

be equal to λp.
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Once the scalar is turned on, it will deform the AdS-Schwarzschild black brane solution, as

well as the spectrum of its quasinormal mode. As explained by Kovtun and Starinets, the

spectrum of a black brane quasinormal modes is equivalent to the hydrodynamic spectrum of

the dual plasma. In particular, the lowest quasinormal mode of the graviton (with appropriate

polarization) has to be identified with the sound wave in the plasma.

It is straightforward to compute such deformations, and extract the correction to τeff . Instead

of parameterizing the deformation in terms of λp, it is more convenient to parameterize it in

terms of

δ ≡ 1

3
− c2

s

Note that
∣

∣

∣

∣

(λp)
1/(4−p)

T

∣

∣

∣

∣

≪ 1 ⇔ |δ| ≪ 1
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We find:

τeff = τ⋆
π

(

1 + β[p] δ + O(δ2)

)

,

where τ⋆
π is the universal relaxation time of the holographic conformal hydrodynamics at

(infinitely) strong coupling, i.e., the lower bound, and β[p] is the correction induced by the

operator with dim[O] = p. Explicitly we find,

β[p] =







2.2837(0) , p = 3 ,

6.3016(8) , p = 2 .

Again, in both cases the effective relaxation time bound is satisfied.
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⇒ Effective relaxation of N = 2∗ plasma.

It is possible to go beyond the leading order deformation of the CFT hydrodynamics in explicit

examples of gauge theory/supergravity correspondence. In this way we find that

τN=2∗

eff T ≥ τ∗
πT

i.e., the bound is satisfied.

⇒ τeff in phenomenological models of gauge/gravity correspondence

In arXiv:0902.2566 Todd Springer studied a phenomenological model of AdS gravity with a

single scalar field. The scalar potential is chosen in such a way so that the hydro computations

are simplified; in fact, is it possible to obtain (implicit) analytic expression for τeff . Using the

results of that paper, it is possible to verify to that the relaxation time bound is again satisfied.
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τeff at weak coupling

In the derivation of the second order viscous hydrodynamics from Boltzmann equations one

finds that the effective relaxation time is (see Baier et.al, [arXiv:hep-ph/0602249])

τBoltzmann
eff T =

3ηT

2P = 6
η

s
&

3

2π
,

which is much larger than τ⋆
πT since the ratio of the shear viscosity to the entropy density at

weak coupling substantially exceed the KSS viscosity bound

Beyond supergravity approximation for τeff

⇒ Consider leading correction in 1
λ (the inverse ’t Hooft coupling) in N = 4 SYM plasma.

We find

τeffT = τ∗
πT +

375

32π
ζ(3)λ−3/2 + · · ·
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Notice that so far, the situation with the relaxation time bound is precisely parallel the status of

the KSS viscosity bound, but before the Kats-Petrov paper!

⇒ We can do the analog of the Kat-Petrov computations, and ask how does the relaxation

time is modified in CFT’s with unequal central charges, i.e., c 6= a. We find

τeffT = τ∗
πT − 11

16π

c − a

a
+ O

(

(c − a)2

a2

)

Since (c − a) can be of either sign, effective relaxation time bound can be violated in a

controllable string models.

Amusingly, the KSS bound can also be violated in non-supersymmetric CFT’s; precisely when

such violation occurs, the effective relaxation time bound is violated as well. (see M.Heller,

R.Myers and AB)
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τeff near the phase transition
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Figure 4: Effective relaxation time τeff of N = 2∗ strongly coupled plasma. The vertical red

line indicates a phase transition with vanishing speed of sound. Since c2
s ∝ (T −Tc)

1/2 near

the phase transition, τeffTc ∝ |1 − Tc/T |−1/2.

The critical slow-down suggested by Song and Heinz indeed happens in holographic models!
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Conclusions and further directions

I introduced the notion of the effective relaxation time τeff , and argued that it (or more

precisely the dimensionless quantity τeffT ) is bounded at weak coupling and at infinite

coupling in lots of models.

The relaxation time bound is violated whenever the KSS viscosity bound is violated

I showed that the effective relaxation time can diverge near the phase transitions in

holographic models.

In the future:

I’d like to better understand the link between the ’large’ relaxation time and the sensitivity

towards initial conditions. Some people question whether such relation indeed exist...

How does the relaxation time behaves near the second-order phase transitions?
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