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. Non-equilibrium and Steady State (Quantum impurities)

-Time dependent description
- The steady State - open systems

- Time independent description
Scattering theory, Lippmann-Schwinger equation

- Scattering eigenstates and Non-equilibrium Steady State Dynamics
. Scattering States in integrable Impurity Models

- Traditional Bethe-Ansatz : closed systems -inadequate
« Equilibrium, Thermodynamics

- Scattering Bethe-Ansatz : open systems -new approach (SBA)
« Non-equilibrium Steady States

« Scattering states of electrons off magnetic impurities
. Equilibrium, Thermodynamics

. The Interacting Resonance Level Model (SBA)
. The Kondo Model (SBA)

. Conclusions



Non-equilibrium and Strong Correlations

. Nonequilibrium systems are relatively poorly understood compared to
their equilibrium counterpart.

. No unifying theory such as Boltzmann's statistical
mechanics

. Many of our standard physical 1deas and concepts
are not applicable (Scaling? RG? Universality?)

. Non-equilibrium systems are all different- it 1s unclear
what if anything they all have in common.

. Strongly correlated systems are -in general- poorly understood.

. Perturbative approaches fail
. New degrees of freedom emerge
. New collective Behavior

Quantum Impurities - Theory and Experiment
Interplay : non—equilibrium and strong correlations




Strong Correlations out of Equilibrium

. Can control the number of electrons on the dot using gate voltage

Kondo Impurities —
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. For odd number of electrons- quantum dot acts like a
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Quantum Impurities out of Equilibrium

The Quantum Impurity:
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Preview:
e Describe: Steady State

e Construct: Scattering states eirgenstates -
Boundary conditions set by leads: x; — —o0

e Compute: Current in scattering states



Non-equilibrium: Time-dependent

Description

x t < t,, system described by: p,

x at t,, couple leads to impurity
%t > t,, evolve with H(t) = H, +¢"H,

At T > 0:

1. initial condition: pg

{ —af dt' H(t") }

2. evolution: U(t,t,)

o p(t) = L‘T-i'(?‘. to) po U(t,t,)

(O(t)) = Tr{p(t)O}

At T =0:

1. initial condition: |@)p.ins

2. evolution: U(t.t,) = Te i, WHE) '}
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The Steady State

When will a steady state occur?
e Leads good thermal baths, size L — o

° — 3 limg, ., no IR div. (Doyon, N.A. 2005)

e s Infinite Size System
Finite Size System y
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e Hence
(O(t)) = (W|O|)e = (O)
) = |1(0)) = U(0, =00) |®)baths

o ), eigenstate of: H = Hy+ Hy (Gellman-Low thm)

o |1}, scattering state - BC imposed asymptotically



Non-equilibrium: Time-independent

Description

e |V}, eigenstate: H = H,+ H,,

o 1 I ) I- ) — I' o 1 o o 1 3 o
initial condition = boundary condifton

Lippmann Schwinger equation

Boundary condition |¢)baths

e |1/}, scattering state

scattering states describe Non-equilibrium




Scattering States (QM)

. Since we are in a steady-state, can go to a time-independent picture.

. Scattering by a localized potential 1s given by the Lippman-Schwinger equation:
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The Scattering state (Many body)

A scattering eigenstate 1s determined by the incoming asymptotics: the baths
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The scattering eigenstate 1n unfolded geometry:

How to construct the scattering States?




The Scattering Bethe-Ansatz

e Can we use Bethe-Ansatz for scattering states 7
+ Traditional Bethe-Ansatz - inapplicable:

— Periodic Boundary Conditions

— Equilibrium, Closed Systems: Thermodynamics
+ New technology = Scattering eigenstates
— Asymptotic Boundary Conditions

Scattering Bethe-Ansatz

+ Consistency of non-eq BC and integrability (YBE)?
+ Integrability out-of-quilibrium?

o Iixplicit construction - the IRL model:
(integrability: Filyov- Wiegmann 1950)

Hip, = E E;;f.'T-r'i--:-F{-'ﬂ-r’fT.ff



IRL: The Scattering State 1

Diagonalize the Hamiltonian by means of Scattering Bethe-Ansatz:

Single-particle scattering states: (0, = 2 arctan | ——— |, phase-shift)
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IRL: The Scattering State 11

Multi-particle scattering state: N; lead-1, Ny lead-2:

Hp}>5 — /d;li E?..ijj:r.j gzzsﬁq}(?sJi*t)Sg;fﬂ.(:rS—mt)
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IRL: Current & Dot Occupation

¢ Current and dot-occupation:

A (A P
Vv j=1,2
ng = did
e Expectation values: I, 7, in Scattering State: Hp}}‘}ifi
(e = / dp [p1(p) — p2(p)] (

P — Ed)g T AZ

d {p — Edjg + A2

(ng)ith = / dp |p1(p) + p2(p)

Apparent simplicity is misleading:
In the Bethe basis:

-Excitations undergo phase shifts only
-Choice of momenta incorporates interactions and boundary conditions

Need determine:  p1(p), po(p)



e boundar onditions

Boundary condition: |v))s — wave function of two free baths :

) = [Spatns = [ €ZPmML 0] (2) M2, 0 (20)]0)

However |{p}) tends to:
{p}) = {pho = [ emits eErar®mpdson(es=edn Lyl (2,)N)2, 45 (20)|0)

Both ‘¢>bath s and \{p})o are eigenstates of Hg. so
D) baths = 2 (py AprH{p}Ho

Non-trivial S-matrix

U _pk

S JE EAII!'- k) ' 2 k4+p—2eq
(p, = —7

2 k4+p—2eq

New basis of states in free leads

example: e'F1=14HR2T2[40(0; — 29) + (SA)B (22 — 1))

eigenfunction of: hg = —i(dy + d2) for any S (infinite degeneracy)



Bethe Anstaz basis vs. Fock basis

S-Matrix S=1 N S+£1

Basis Fock Basis — Bethe Basis
Fermi-sea

Fermi - Dirac - Bethe
Momenta distribution distribution

-Energy levels are infinitely degenerate (linear spectrum)
-Choose momenta of incoming particles to look like two free Fermi seas



The Scattering State 111

e |{p}). eigenstate for any p(---pn

(e — "

P4

L J

A J

e {p} - BA momenta (not Fock momenta)

e Choice of BA momenta: determined by problem.

Non-eq BC: far from impurity — 2 free leads

BC:
|§b>baths D

o~

e Momentum distributions in leads - need to solve TBA eqns



The Boundary Conditions 11

How to choose the momenta {p} ?

Auxiliary problem: in H, match ground state in Fock basis with
ground state in Bethe basis on a ring of length L:

N
[=1

Or:

27‘(‘
LJ

1
D; E Z InS(p;,p)

The BA eqgns describe the free leads on a ring (in the Bethe basis)



The Boundary Conditions 111

eNon-eq BC — momentum distributions p1(p), pa(p) :

— TBA eqns with upper cut-offs k! = k,(;7 ), lower cut-off, D:

F\‘}
ulp) = 52008 =) = 3 [ K s (k) b

71=1,2
fx‘}
o) = 30K =p) = 3 | Kok (h)
j=1,2
with: Kip, k) =4 (k—8q)

™ (p+h—2E)2+ 5 (p—k)>

TBA eqns describe the free leads on a ring (in the Bethe basis)

Comment:
These TBA eqns valid for: ¢4 > O otherwise, eqns become more complicated



IRL: Current vs. Voltage

. Solve the TBA equations (numerically, analytically)

. Compute Exactly current as a function of Voltage:
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. Can easily generalize to finite temperature case
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. Universality out of equilibrium: change in D can be compensated
by change in U and A



IRL: Current vs. Voltage

e TBA egns for momentum distributions: Non-eq BC
e p;(p) parametrized by D - lower cut-off (bandwidth)
e For Universality: (physical scales < D)

— lower cut-off: D — ~

— vary U, A, keeping low-E physics unchanged

— U, A on RG trajectory

e New scale emerges 1) characterizing RG trajectory

e Universality out-of-equilibrium

oxplicitly, for U — oo, we find: (Wiener-Hopf..)

A (T 1 1 — €4 | H2 — €d
([)s = — (=) |tan ' —= —tan ' =<
- o (g) [ T T,

o L1 k 1 M1 — €4 1 M2 — €q
Ngls = =+ — - tan &= —— +tan = ——
s T T o ( ) { T}, T,

Low-energy scale: T, = D (%) ) held fixed in scaling limit:
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Traditional vs Scattering

The construction of \1&) s 1s an example of the SBA approach:

SBA TBA

Svstem Infinite Finite

Boundary condition || asvmptotic {open) periodic
Wavetunctions used explicitly not used
Thermodynamics difficult easy

Scattering Properties possible | not possible
Nonequilibrium Generalization Yes No

Many applications:
. Scattering S-matrix of electrons off magnetic impurities

- elastic and inelastic cross sections
. Calculation single particle Green’s functions, spectral functions
. Calculation of finite temperature resistivity (resistance minimum)




