DeepMind

Generative models, manifolds and
symmetries: tools and
applications

Danilo J. Rezende

Arnold Sommerfeld School summer school, Munich, 2022

O

https://danilorezende.com/slides/



Abstract

The study of symmetries in physics has revolutionized our understanding of the world. Inspired by this, the
development of methods to incorporate internal (Gauge) and external (space-time) symmetries into machine
learning models is a very active field of research. We will discuss general methods for incorporating symmetries
in ML, and our work on invariant generative models. We will then present its applications to quantum field
theory on the lattice (LQFT) and molecular dynamics (MD) simulations. In the MD front, we'll talk about how we
constructed permutation and translation-invariant normalizing flows on a torus for free-energy estimation. In
the LQFT front, we'll present our work that introduced the first U(N) and SU(N) Gauge-equivariant normalizing
flows for pure Gauge simulations and its extension to incorporate “pseudo-fermions’, leading to the first proof

of principle of a full QCD simulation with normalizing flows in 2D.
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https://en.wikipedia.org/wiki/Ludwig_Boltzmann
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Problem summary

We are given an energy function with

known invariances...

.. that defines a Boltzmann distribution ...

.. under which we want to compute

expectations and free energies.

O



DeepMind

Normalizing flows
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Why normalizing flows?

Scientific applications require high-accuracy predictions with reliable
error estimation

Model de-biasing methods (e.g. IS, MCMC) require fast exact model
likelihoods and sampling

This excludes certain families of generative models such as GANs,
energy-based and diffusion models

Auto-regressive, latent variable and flow models are compatible with the

O

desiderata of MCMC corrections



Change of variable formula

Our goal is to define a density q(x) over a D-dimensional vector X .

We can achieve this by transforming samples from a base distribution U ~~ 77(11)

I

q(x) = m(u)|det Jr(u)|™

T x = T'(u)

where is an invertible transformation and



Basic concept of NFs

Goal: Use ML to transform a simple base density into a complex density.

We assume the transformation to be a diffeomorphism with tractable Jacobian

determinant.

Rezende and Mohamed, Variational inference with normalizing flows, ICML (2015)
Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021) @
Kobyzev, Prince and Brubaker, Normalizing Flows: An Introduction and Review of Current Methods, IEEE PAM (2021)


http://proceedings.mlr.press/v37/rezende15.html
https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf
https://dx.doi.org/10.1109/TPAMI.2020.2992934

NFs are composable

u—> N> 72— X

T5 o1 <--- jsalso aflow
(TooTy) ' =T o Tyt

det J1,or, (0) = det J7, (T1(w)) - det J, (u)



Composing multiple layers

Zo — T;

'

log|detJr, (z9)| + log|detJr, (z;)] + -

TZTKO---OTl

1>

'

_>TK

'

+ log|detJr, (zxk—1)| = log|detJr(zp)]

Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021)
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https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

Composing multiple layers

TZTKO---OTl

K K
log |det Jr(zo)| = log H det Jr, (zx—1)| = Z log |det Jr, (Zx—1)|
k=1 k=1

Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021)
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https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

Density evaluation and sampling

Sampling x =T(u) u~ 7(u)
Forward & Jacobian
determinant

Density of samples q(X) = 7T(U-) ‘det JT(u)‘_l

Arbitrary density q(x) — (T_l(X)) \det JT—l (X)| Lnézzfnceiri;l]?cobian

Slide credit: George Papamakarios ‘ql
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What should models
optimize for?
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Training objective

do
Our goal is to fit a model to an (unnormalised) target distribution

[ ]
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Kingma and Ba, Adam: A method for stochastic optimization, ICLR (2015)



Kullback-Leibler divergences

The Kullback-Leibler (KL) divergences are popular choices for training flows:

o forward-kL:  Dxi(p || 9) = Ep) logp(z) — log q(z)]

o reverse-KL:  Dk,(q || p) = Eq) [log g(x) — log p(z)]

Dxi(p || @) = 0 with equality if and only if the two distributions are equal.

Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021)
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https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

Forward KL

The forward KL can be rewritten as

DxiL(p || 99) = Ep() [log p(2) — log go()]

= ~Ep(a) [log go(2)] + const

= —Epw [logw (T, (x)) + log ‘det JTe—l(ﬂj)H + const

e

= Maximum likelihood
estimation

Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021)
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https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

Forward KL

Given samples {;L‘n}ﬁle ‘rom p* we can use the MC approximation

N
-1
Dxi(p || gs) E [log m (T, ' (zn)) + log |det Jr—1(xy) ] + 09{ t
"~ ,‘
/4 /
// /
, /
/
We can evaluate this for a batch g Independent of the parameters.

of samples to approximate

00

Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021) b’


https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

Reverse KL

The reverse KL can be rewritten as p*(x) = Zp(x) = e—ﬂAU(w)

Dxv(qo | p*) = Egy(a) [log go(w) — log p*™ ()] crergy

-
-
-
-

-

= qu(x) :log QQ<33) I 5(](37)]
:,IvEﬂ“) log m(u) — log |det Jr, (u)| + BU (Ty(u))]

d

reparametrization

Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021) b,


https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

Reverse KL

Given samples  {u, }_, from the base 7T(u) we can approximate this KL as

N
1
Dxr(qo || %) N, E log m(uy,) — log |det Jz, (un)| + BU (Th(un))]
n=1

4
/
/
/

We can evaluate this for a batch 0L
of samples to approximate %

Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021) b’


https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf

KL Comparison

Forward KL Reverse KL
e “Training by sample” e “Training by energy”
e requires samples from the target e requires an energy function
e “mode covering” e “mode seeking”
» |
\ /
\ /
\\ I,
N /

Training objectives can be combined

Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021)
Noé et al., Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning, Science (2019) ‘G
Wirnsberger et al.,, Targeted free energy estimation via normalizing flows, JCP (2020)



https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf
https://www.science.org/doi/epdf/10.1126/science.aaw1147
https://aip.scitation.org/doi/10.1063/5.0018903

DeepMind

Correcting models:
reliable predictions with
(some) guarantees
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Goal:

Guarantees of correctness (controlled
systematic errors)

Model inaccurate === Results but slow

Model - Results and fast

O



Debiasing expectations

The goal is to compute expectations w.r.t. the target:

(0) = Ep) [O(2)]

Averages under the model are, in general, biased:

Eg(2) [O(2)] # Epy [O(7)]

Common strategies: Metropolis—Hastings MCMC and Importance Sampling

O



Metropolis—Hastings MCMC

Generate a new trial move using the flow: Y ~ (g (’y)
(independent proposal distribution)
*

: g\ L

Accept I — Y with probability: acc(r,y) = min |1, *(y)q ()
p*(2)q0(y)
Using the collected samples {:C }N 1 N
njJjn—= 2 _
| | (O)zO:ng O(x;)

estimate expectations as:

1=1

Albergo, Kanwar and Shanahan, Flow-based generative models for Markov chain Monte Carlo in lattice field theory, PRD (2019).
Nicoli et al., Asymptotically Unbiased Estimation of Physical Observables with Neural Samplers, PRE (2020).
Gabrié, Rotskoff and Vanden-Eijnden, Adaptive Monte Carlo augmented with normalizing flows, PNAS (2022).
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.034515
https://arxiv.org/abs/1910.13496
https://www.pnas.org/doi/epdf/10.1073/pnas.2109420119

Importance Sampling (IS)

The model is the proposal distribution:

Draw N samples from the model:

Compute importance weights:

Estimate expectations as:

O



Effective sample size for IS

| estimatee want to estimate: ] = /dg; h(gj)p(gj) th
1 Y
MC estimate: I = N ; h(z,) L ™~ p(CE)
~ N
I=) wh(z,) T, ~ q(T)
n=l - Wy,

Wy = N
anl Wn,

Martino et al. Effective Sample Size for Importance Sampling based on discrepancy measures, Signal Processing (2017). ‘q


https://www.sciencedirect.com/journal/signal-processing

Effective sample size for IS

The effective sample size (ESS) is defined as:

A

Var,|I|
Var, [I ]

ESS = N———

It can be estimated as:

Martino et al. Effective Sample Size for Importance Sampling based on discrepancy measures, Signal Processing (2017). ‘q


https://www.sciencedirect.com/journal/signal-processing

Sampling with flows: simple accept/reject bias correction

O

Albergo, M.S., Kanwar, G. and Shanahan, P.E., 2019. Flow-based generative models for Markov chain Monte Carlo in lattice field
theory. Physical Review D, 100(3), p-034515.
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Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT)

Alex Matthews Michael Arbel Danilo J. Rezende Arnaud Doucet
DeepMind INRIA DeepMind DeepMind
Univ. Grenoble Alpes

github.com/deepmind/annealed_flow_transport

Slide credit: Alex Matthews
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Continual Repeated Annealed Flow Transport Monte Carlo (CRAFT)

Flow Transport |S + Resampling MCMC

®
. ® ® @ @
Qe %
. .. —4 — Sy —
@
y N
° @
Wi i ¥
W,jA_I X Gk (Xi—1 X5) Xi~ Ky (X))
X, =X, j ~Multi(IW}) |
Image credit: Alex Matthews @

Matthews, A.G., Arbel, M., J. Rezende, D. and Doucet, A., 2022. Continual Repeated Annealed Flow Transport Monte Carlo



CRAFT flow training objective

Previous distribution Current distribution

passed through a flow T

Zero if flow \ /

transport (l)
T
perfect. H = E ]CE 7Tl— 1 | |7Tl]
l/—l
Sum over
transitions
between
temperatures.

Slide credit: Alex Matthews

Estimate objective and gradients
using current importance
sampling estimate.

Gradients local to transitions so
no need to backprop through

discrete steps.

Further analysis in paper.

O



CRAFT for Phi4 Lattice-QF T
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Figure 3. Timed comparison of MCMC methods for the ¢* example, based on fifteen repeats. CRAFT, SMC and VI serve as proposal
mechanisms for Particle MCMC. HMC is applied directly to the target. Error is in estimating two point susceptibility, an example,
physically relevant expectation. Note HMC never reaches the detailed level of error in the top row.

Matthews, A.G., Arbel, M., J. Rezende, D. and Doucet, A., 2022. Continual Repeated Annealed Flow Transport Monte Carlo bl
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General principles

Most existing ML techniques and tools assume data leaves
in RAn and cannot be adapted in a straightforward way to

manifolds

There are very few tools that can be broadly applied to

manifold data

Solutions need to be custom-made for each problem in

general

o



Continuous-time flows on Riemannian manifolds

dz
d_tt — g¢(t, Zt)

In pe(z) = Inpo(0) — / s |G<xs>|-%tr8% VIC@)lg(s, zs)

Metric
matrix on
local chart
Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, |. and Duvenaud, D., 2018. Ffjord: Free-form continuous dynamics for scalable ‘G'
reversible generative models. arXiv preprint arXiv:1810.01367.

Mathieu, E. and Nickel, M., 2020. Riemannian continuous normalizing flows. arXiv preprint arXiv:2006.10605.



Cost-Concave Potential Flows on Riemannian manifolds

»: M—=>R

‘ \[Jhiis \Qﬁ(il?) —

int
yeM

I Intrinsic distance I

1

‘Diffeomorphism‘ f : M — j{/l
f(z) = exp,(=Vo(z))

Villani, C., 2009. Optimal transport: old and new (Vol. 338, p. 23). Berlin: Springer.

 +(y)
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Convnets on manifolds
and fiber bundles: A
general solution,
formulation
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Convnets on manifolds and fiber bundles

Convnets
in R*n X, (y)

o



Convnets on manifolds and fiber bundles

We can't trivially extend convnets to fiber bundles:
Linear combinations of elements belonging to different
fibers are neither invariant nor equivariant

ez(1)

Image credit: Disentangling by Subspace Diffusion, Pfau et al, arxiv 2020



Convnets on manifolds and fiber bundles

General solution: Elements of different fibers need to be
"parallel transported” to a "common fiber" before taking
linear combinations

Image credit: Disentangling by Subspace Diffusion, Pfau et al, arxiv 2020

o
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General principles

Invariance

Given a group...

foly,=1f

..and amap g € G

.. with group action f :A— B

Equivariance

1,
foTy=T,0f

Pitts, Nominal sets: Names and symmetry in computer science, Cambridge Univ. Press (2013).



Why respect symmetries?

Many real-world problems have known symmetries.

e Physics
o time reversal,
o identical particles,
o wave functions, or
o gauge invariance, ..

e Point-cloud modelling (e.g. 3D objects)

e Image detection (e.g. rotations)

I:> Can have dramatic effects on training!




Examples of common symmetries

e Permutations AT
o symmetric Pl i, L ) =n(.. L
o antisymmetric w(...,xi,...,xj,...) = —w( y Ljy
e Translations and/or rotations
o SE(3) r— Rr+p
o Octahedral symmetries
e Gauge invariance
o U(n) (Q-U)u(z) = Qz)U, () (z +
o SU(n)
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General mechanisms to
incorporate symmetry
and equivariance in ML
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Building Invariance: Group convolutions

Invariant map

Equivariant map

(@) = [ du(g)o(T, o )
i(z) = / du(9)(T, 1 0 $)(T, 0 @)

Example:
group convolution nnets

o



Building Invariance: Group convolutions

Invariant map o(z) = /dﬂ(g)ﬁb(Tg o )

A

Equivariantmap ¢(x) = /dﬂ(g) (Ty-10¢)(Ty o x)

Example:
group convolution nnets

Not scalable with dimension of G! o)



Building Invariance: Direct use of known group invariants

Example: Pairwise interactions for translational invariance
(e.g. graphnets, transformers)

6(2) =3 F(lles ;)

O



Building Invariance: Direct use of group invariants

Example: Trace-networks for matrix conjugation invariance

X - UXU~
U e SU(n)

IEO>(()apr;1pIe from Physics: Wilson WC — ﬁ(Pez f UM d.”L'M ) @



Building Invariance: Canonicalization maps

Canonicalize -> Flow on cell -> Uncanonicalize
_ Haar sq(s) Haar SU(3)

O



Building Equivariance: Equivariance from Invariance

Lemma 2 (Equivariance from invariance) Let f : RP — R be invariant with respect
to G, and assume that Ry is orthogonal for all g € G. Then Vyf(u) is equivariant with
respect to G.

Example: Permutation equivariant gradient maps

f(z) =h()_ ()

)
Vi f(z) =R &(x;))Va, o(x
4 j Z; (/
J
Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S. and Lakshminarayanan, B., 2019. Normalizing flows for probabilistic bl’

modeling and inference. arXiv preprint arXiv:1912.02762.



Convnets on manifolds and fiber bundles: Gauge symmetries

rep in unitary gauge

Un) ™ un)

I°4©) 4°,0)

f f

Gauge group
G (compact)

15(C) ¢*
—ic

¢a

¢,

Action on C"

Image credit: Gauge Theories and Fiber Bundles: Definitions, Pictures, and Results, Adam Marsh
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Convnets on manifolds and fiber bundles: Gauge symmetries,

a concrete example.
Matrix-conjugation equivariant convnets

ToWy i = QW QL
Parallel transport of W

Wi — Z Wi, j, kU, k- uWat k- JUT

I,k

Examples of non-linearities that preserve equivariance

Wei— Y o kW ;W5 4 Wei = 9o iU W)W i

3,k

Favoni, M., Ipp, A., Miiller, D.l. and Schuh, D., 2022. Lattice gauge equivariant convolutional neural networks. Physical Review Letters,

128(3), p.032003.
Gerken, J.E., Aronsson, J., Carlsson, O., Linander, H., Ohlsson, F., Petersson, C. and Persson, D., 2021. Geometric deep learning and

equivariant neural networks. arXiv preprint arXiv:2105.13926.

o



Building Invariant Densities: General principle

Simple Invariant Density Equivariant Complex Invariant
(e.g Haar measure or Uniform) Transformation Density

Lemma 1 (Equivariant flows) Let pi(x) be the density function of a flow-based model
with transformation T : RP — RP and base density py(u). If T is equivariant with respect
to G and py(u) is invariant with respect to G, then pyx(x) is invariant with respect to G.

Rezende et al., Equivariant Hamiltonian Flows, arXiv (2019)
Kohler, Klein and Noe, Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities ICML (2020)
Papamakarios et al, Normalizing flows for probabilistic modeling and inference, JMLR (2021)

O


https://arxiv.org/abs/1909.13739
http://proceedings.mlr.press/v119/kohler20a.html
https://www.jmlr.org/papers/volume22/19-1028/19-1028.pdf
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Lattice Quantum Chromodynamics

n+z>_l Uu(n;rf/) l_n+ﬂ+z>

v | Q AUl i)

n_T Uuﬁ) T_n +i

Pu(@) = Ula,))U(x + o, )UN @ + 0, U (@,0)

S:=-5Y % % Re[%Tr(PMw))] =

sites x p=1v=p+1

p(U) x e PS5V o



Motivation: Gauge Equivariance

U,(x) = Qz)U,(z)2(x + ﬂ)T

Y.(x) = Qz)Y,(z)(x + i1)7

o



Motivation: Gauge Equivariance
Let h be an invertible map such that

h:SU(N) — SU(N)
h(Qu(az)X“(x)Q“(x)T) — Qu(x)h(Xu(x))Q“(x)T
f(X“(x)) = h(PNV(x))SILV(x)T
ware S, (@) = Xu(2) P ()

is equivariant to Gauge transformations @



Building Equivariance: Matrix Conjugation Equivariance

X >UXU~
U e SU(n)
Proposition 1. Let f : G — G be a matrix conjugation

equivariant diffeomorphism. Then f restricted to T is a

diffeomorphism of T' that is equivariant under the action
of the Weyl group.

T is the maximal torus of G

Boyda, D., Kanwar, G., Racaniére, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling b!
using $ SU (N) $ gauge equivariant flows. arXiv preprint arXiv:2008.05456.



Building Equivariance: Matrix Conjugation Equivariance

In the case of G = SU(N) or G = U(N), a maxi-
mal torus is given by the subgroup of diagonal matrices,
and the Weyl group is isomorphic to the group of per-
mutations

Matrix Conjugation Equivariance < Permutation Equivariance
of eigenvalues

Boyda, D., Kanwar, G., Racaniére, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling b!
using SU(N) gauge equivariant flows. arXiv preprint arXiv:2008.05456.




Building Equivariance: Matrix Conjugation Equivariance

Matrix-conjugation diffeomorphisms on SU(N) are generated by
permutation-equivariant diffeomorphisms on eigenvalues

(X, D = diag(w)) = eigen(U)
Y = Xdiag(g(w)) X'

If g is a permutation-equivariant flow that preserves
unitarity (\prod g(w) =1 ) (o)



Haar measure on the maximal torus of SU(N)

Haar SU(3) Haar SU(4) 3D projection
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Alternative constructions
for SU(N)
Gauge-equivariant maps
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Alternative Gauge-equivariant map: Exp-product map

. . A collection of staples
Projects to the Lie

algebra

k
Y, (z) = ek W [Uu(fv)Su(w)]U“(x)

Invertibility requires
bounded coefficients @



Alternative Gauge-equivariant map: SU(N) ODE flow, trivializing flows

Gauge-invariant scalar

Lie algebra generators

Yu(z) = ef" o2 ¥U, ()

Invertibility requires
bounded step-size

Right-invariant derivative

O

Trivializing maps, the Wilson flow and the HMC algorithm, Martin Luscher
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Application:
Free energy of
solids
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Collaborators 1 1

Peter George
Wirnsberger Papamakarios

Borja lbarz Andy Ballard

-

il
Stuart Sébastien Alexander Danilo Charles
Abercrombie Racaniére Pritzel Rezende Blundell

Wirnsberger, Ballard et al., Targeted free energy estimation via learned mappings, JCP (2020).
Wirnsberger, Papamakarios, lbarz et al., Normalizing flows for atomic solids, MLST (2022). @


https://aip.scitation.org/doi/10.1063/5.0018903
https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16

Free energy

\ " Host
AANG
—
F=—f"lz | ¥ & o

Image credit:
Auer and Frenkel,
Nature (2001)

a
L =
$ [
» -
=
[=

Image credit: Mey et al,, Living J Comput Mol Sci. (2021)

Related to:

e Phase transitions

e Molecular stability

e Drug binding and solubility

Image credit: Morissette et al,, PNAS 100 ‘q


https://www.pnas.org/content/pnas/100/5/2180.full.pdf
https://www.nature.com/articles/35059035
https://livecomsjournal.org/index.php/livecoms/article/view/v2i1e18378

Problem definition

Estimate free energy changes between two states.

1
Palx) = Z—e_BUO‘(w)
staterrB/ °
F,=—-8"1logZ, AF = Fp — Fx

o



Estimators

Many specialised estimation techniques have been developed:

o  Thermodynamic integration

o Free energy perturbation (FEP)

o Bennetts acceptance ratio (BAR)

o Jarzynski method / Annealed Importance Sampling Can we use ML to
o  Weighted histogram analysis method (WHAM) improve them?

o Multistate BAR (MBAR)

O Metadynamics...

Frenkel and Smit (2002), Understanding Molecular Simulation, 2nd edn (San Diego), 2002.

O



Traditional approaches

e Molecular Dynamics (MD)

e Markov Chain Monte Carlo (MCMC)

o Hamiltonian Monte Carlo

o Langevin dynamics

20 nm
Image credit: Lupi et al, Nature 501

Animations credit: Sari¢ Lab, andelasaric.com



https://www.nature.com/articles/nature24279
https://andelasaric.com/

Traditional approaches

Samples directly from

Sampling & expectations
1. Burn-in period

2. Collecting samples

target distribution P(x)-—"" -Azih<isn

No unbiasing required

3. MC estimate

_____________ - (0) =~ O=N"1 ZO(CC’L)

o



The “overlap problem”

>

Configuration Space

no overlap

regions of
high probability

O



Multistate methods

Introduce intermediate distributions:

e Thermodynamic integration
e Multistep FEP

e WHAM

e MBAR,..

Works well but is expensive.

Many simulations

Image credit: Wirnsberger, Ballard, et al,, JCP (2020).

@ v 2

4

Ve | \

(e /'" T \\\ ~I|
[®) AR \\ ’, N
- — I S 7, k
- I | \
o ‘ roN
S / \
O How to define good
Y— . .
C intermediate
@) distributions?
O A
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https://aip.scitation.org/doi/10.1063/5.0018903

Learned estimators

a”
Free energy estimation as a learning problem: Mg

Setting 1

Trainon -]
datasets =4

A/

———

B

Setting 2

Sample from a
tractable base ~

P (M(x)) = pi(z)|det Jar ()|

\

Image credit: Wirnsberger, Ballard et al., J. Chem. Phys. (2020).
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Solids: Problem setup
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Requires two experiments.

Wirnsberger, Papamakarios, Ibarz et al, Normalizing flows for atomic solids, MLST (2022).
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https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16

Atomic solids: permutation equivariance
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Wirnsberger, Papamakarios, Ibarz et al, Normalizing flows for atomic solids, MLST (2022).

Complex
Invariant
Density

-1
(2)]

@ .
o R
FE R .
. : o. :
: . ......... APy
X JUURURUE il


https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16

Permutation-equivariant coupling layer

i P vy v YN | YN

Split across particle coordinates: 4 3 i

b1 b2 dN
= i A B > T > T > T
Xn == (Xn ) Xn ) 7y Y 7y
C
Coupling layer is

permutation-equivariant if C is. xf| xP x5 | x3 x4 | x%

Image credit: Wirnsberger et al., Targeted free energy estimation via normalizing flows, JCP (2020).
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Permutation-equivariant conditioner

Transformer architecture

(without positional embeddings)

Image credit: Vaswani et al., Attention is all you need, NeurIPS (2017).
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https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

101 — Forward
@® Endpoints

0.8 1

0.6

0.4 1

2.00 A

1.00 A

71 —— Derivative
@® Endpoints

Coupling flow on tori: Periodic boundary conditions
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Slide credit: George Papamakarios
Rezende, Papamakarios, Racaniére et al., Normalizing flows on tori and spheres, ICML (2020).
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Coupling flow on tori: Circular embedding
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Slide credit: George Papamakarios

Image credit: Wirnsberger et al., Targeted free energy estimation via normalizing flows, JCP (2020).
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Global translation symmetry

e Choose a particle as reference
e Place it randomly

e Flow generates N-1 other particles relative to reference

Slide credit: George Papamakarios
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Results: Radial distribution function

e 512 particles
e Cubicice

e No unbiasing.

g(r)

.......
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Wirnsberger, Papamakarios, Ibarz et al, Normalizing flows for atomic solids, MLST (2022).
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https://iopscience.iop.org/article/10.1088/2632-2153/ac6b16

Solids: Energy histogram

Energies computed from
the base and the model

differ significantly.

Density

No appreciable difference

between model and MD.

—1 MD
[ Base
[ Model

A

Wirnsberger, Papamakarios, Ibarz et al, Normalizing flows for atomic solids, MLST (2022).
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Solids: Histogram of work values

. o o N —18001 /
The distribution of work values | e
exhibits a sharp peak. §
= —43001 .~
3 %% In p(x) ~1800
p®(z) = pU(x) + Ing(x) i
- lm Base
Model
InZ =1n (exp(—ﬁ@(w)»q | ~30.33 ~30.26
T BO/N -25

Wirnsberger, Papamakarios, Ibarz et al, Normalizing flows for atomic solids, MLST (2022).
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Solids: Free energies

Model + MD data 100-200 MD runs

noMDdata (from target) (multistate)
F=-38"'InZ—-InN!) . |

1 I

I

y v '
System N LFEP LBAR MBAR
L 256 3.10800(28) 3.10797(1) 3.10798(9)
LJ 500 3.12300(41) 3.12264(2) 3.12262(10)
Ice Ic 64 —25.16311(3) —25.16312(1) —25.16306(20)
Ice Ic 216 —25.08234(7) —25.08238(1) —25.08234(5)
Ice Ic 512 —25.06163(35) —25.06161(1) —25.06156(3)
Ice Th 64 —25.18671(3) —25.18672(2) —25.18687(26)
Ice Th 216 —25.08980(3) —25.08979(1) —25.08975(14)
Ice Th 512 —25.06478(9) —25.06479(1) —25.06480(4)

Wirnsberger, Papamakarios, Ibarz et al, Normalizing flows for atomic solids, MLST (2022). b
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What is Lattice QCD?

e Lattice quantum chromodynamics (LQCD) is a subfield of computational physics
which aims to simulate elementary particle fields involved in the "strong

interaction” called quarks and gluons.

e These simulations involve discretising space-time using a lattice and simulating

quantum fluctuations of the particle fields; typically using HMC.
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The problem space: The Standard Model of Particle
Physics in a box

Three axes of model complexity:

e dimension of space-time: 2D, 3D and 4D;
e lattice size (discretisation of space-time): Eg from L=8 to L=32;
e features of the theory:

\

=
o Gauge fields: photons, gluons 4&%;’!2 —
m no force (¢p*) "l‘;iEEEii '
m electromagnetism with U(1) ig'i %EE!"E‘.'
m weak nuclear force with ~SU(2) — 7 !aii o
m strong nuclear force with SU(3) 'igsb'iiii E‘
. . . < g 3 ‘ 2
o Fermion fields: electrons, quarks "!i =g==r ."
i’wggw.!wag‘
A
T D




Private & Confidential

Scale Enables Impact: Larger lattices allow for ab-initio
study of a larger number of problems

Lattice size =L
Volume = L7

Beta >=6
L >=16 L >= 32 L > 96
(exascale compute)
e Baryon e Study nuclear e muon magnetic
s_pectrogcopy fusion moment
g;)eu‘nd degz.lc—xete e Big Bang e Study dark
: nucleosynthesis matter
energies / e Study the
masses) interior of @

neutron stars
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Modelling scalar fields with flows

Flow-based generative models for Markov chain Monte Carlo
in lattice field theory

M. S. Albergo,l’z’3 G. Kanwar ,4 and P. E. Shanahan™!

' Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
*Cavendish Laboratories, University of Cambridge, Cambridge CB3 OHE, United Kingdom
3University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
*Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA

® (Received 17 May 2019; published 22 August 2019; corrected 21 November 2019)

A Markov chain update scheme using a machine-learned flow-based generative model is proposed for
Monte Carlo sampling in lattice field theories. The generative model may be optimized (trained) to produce
samples from a distribution approximating the desired Boltzmann distribution determined by the lattice
action of the theory being studied. Training the model systematically improves autocorrelation times in the
Markov chain, even in regions of parameter space where standard Markov chain Monte Carlo algorithms
exhibit critical slowing down in producing decorrelated updates. Moreover, the model may be trained
without existing samples from the desired distribution. The algorithm is compared with HMC and local
Metropolis sampling for ¢* theory in two dimensions.
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Modelling scalar fields with flows

Sta(@) =) (@) | D 20(7) — ¢(7i + i) — ¢(7 — ) | +m°B(70)* + A(77)*

| ne{l,2}

St

p(¢p) = %e—-sw), 7 = /Hd¢(ﬁ) o—S(9)
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Stack of masked flows

Scale and offset convnets
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The learned model replicates HMC two-point functions

G.(0,1)

0.06
0.05 f
0.04 f

- HMC = Local - ML

0.03 f

0.02

0123456 78910111213 t
FIG. 3. Zero-momentum Green’s functions evaluated for
parameter set ES. Results computed using 10° configurations
from the HMC, local Metropolis, and ML ensembles are
consistent within statistical errors. Error bars indicate 68% con-

fidence intervals estimated using bootstrap resampling with bins
of size 100.
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The Yukawa model:
scalar fields +
fermions
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Modelling scalar and fermion fields with flows

Flow-based sampling for fermionic lattice field theories

Michael S. Albergo,’'* Gurtej Kanwar,>3: T Sébastien Racaniére,* * Danilo J. Rezende,* ¥

Julian M. Urban,®>» ¥ Denis Boyda,% 23 Kyle Cranmer,! Daniel C. Hackett,>* and Phiala E. Shanahan? 3

! Center for Cosmology and Particle Physics, New York University, New York, NY 10003, US
2 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.
3The NSF AI Institute for Artificial Intelligence and Fundamental Interactions
Y DeepMind, London, UK
®Institut fiir Theoretische Physik, Universitit Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
® Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont IL-60439, USA

Algorithms based on normalizing flows are emerging as promising machine learning approaches
to sampling complicated probability distributions in a way that can be made asymptotically exact.
In the context of lattice field theory, proof-of-principle studies have demonstrated the effectiveness
of this approach for scalar theories, gauge theories, and statistical systems. This work develops
approaches that enable flow-based sampling of theories with dynamical fermions, which is necessary
for the technique to be applied to lattice field theory studies of the Standard Model of particle
physics and many condensed matter systems. As a practical demonstration, these methods are
applied to the sampling of field configurations for a two-dimensional theory of massless staggered
fermions coupled to a scalar field via a Yukawa interaction.
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Yukawa model

L = Escalar - Z w}waf
f

Dy =id —my — g¢
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Discussion: Yukawa model

/Leff(¢) = — log/DwTD¢e—fd$C(¢,¢)
/ dzLesi(¢) = / dx Lscalar (@) + log mdet Dd+ cst
f

When Nf =2 and m1 = m2 det D¢, det Dy, = det Dy, det(y5Dy,7s5)
_ T
Christof Gattringer and Christian B. = det Dfl det ng
Lang.Quan- h d [
e laticaLect Notes = det DD' o)

Phys.,788:1-343, 2010.



Pseudo-fermions

(det DD™)1/? / Dy Dyex (PP)7'x

Leﬂ”(¢7 X) — £scalar(¢) — Z X}(DDT)_1X]"
f

Christof Gattringer and Christian B.
Lang.Quan-tum chromodynamics on

the lattice.Lect. Notes @
Phys.,788:1-343, 2010.



Considered many combinations of target density

Name Probability density Use case
Joint® p(d,p) = % exp(=Ss(¢) — @' [M(4)] ' ) Section IIID
¢-marginal p(¢) = 2 exp(—Sn()) det M(g) Sections IIT A and IIIC
¢-conditional B p(p|d) = m exp(—p' [M(4)] " ¢) Sections IIT A, IIIB and III C
(p-marginal ® p(p) = % [do exp(—Sr(9) —¢' [M()] 7" ¢) s
¢-conditional® p(¢lp) = i ;;‘zi;ffé?(;) “f Lﬂﬁ)(];] 9_"1) - Section IT1 B

TABLE I. List of possible distributions derived from the joint target density in Equation (14). The normalizing constant Z is
given by Equation (4) and Zs is defined in Equation (10). Notes: (A) Only the joint, ¢-conditional, and ¢-conditional densities
can be efficiently computed (up to normalization). (B) The ¢-conditional can be sampled exactly by the method specified in

Equation (16). (C) A closed form for the ¢-marginal density is not generally known (even unnormalized).



Various MCMC schemes

>
2

© accept/reject

(46> 619 )
a(¢le) ¢’J

(b) Gibbs (Section IIIB)

----------------- J—
V i accept/reject N
[ AA(¢»SD =0 ¢la90’) ] i i accept/reject

v :
[ AJ(¢7()0 = ¢/,(P,) ]

) ¢’,<p’-)
qa(eld') [e (d) Joint (Section III D)

(c) Autoregressive (Section III C)

FIG. 1. Diagrams illustrating the four types of sampling schemes described in Section III. Blue circles/ellipses depict the
current state of the Markov chain. Yellow boxes depict exactly sampleable densities either produced from generative models or
by Equation (16). Green boxes correspond to Metropolis accept/reject steps using the acceptance probabilities defined in the
text. Dotted lines indicate the Markov chain, whereas solid lines correspond to the internal operations of each Markov chain
step.
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The Convex Potential Yukawa Flow

~ exp(—SB()

P-field:

p(o,p) =

(%0 Ja

— @' [M(8)] 7" )

T} (a0} ~@)

(a) ¢-Marginal architecture based on convex potential flows (Section IV C1).

H det H

q(9) _Tp

2

= A(®)x,

where

Y ~ Le—xTx

ZN

H det H,;kl
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Key challenge: scalable gradient estimation

»,x ~ N(0,1)
¢' = VH(9)
X' = Dy (x)

O



Key challenge: scalable gradient estimation

Scalar flow grad LDJ VoLDJ = V¢E [stopgrad(z" J; ') Jyz]
= VE [stopgrad(CG(Jy , 2))" Jo2]

Fermion flow grad LDJ  VoLDJ = V(E [stopgrad(Jo(Jy Jo + 1)~ 2)" Jpz]
= VE [stopgrad(JoCG(Jy Jo + KL, 2))" Jyz]

O



Main Results: MCMC Acceptance rates

MCMC Approach Modeled targets Flow model Parameters Acc.rate  (|M]) (| T 7'31—)“12
¢-Marginal (I A) () IVC1 VB1 92%  0.0734(1) 0.0159(1) 0.72(1) 0.71(1)
92%  0.0792(1) 0.0491(1) 0.67(1) 0.67(1)
Gibbs (III B) p(4]9) IV C2 VB2 60%  0.0735(1) 0.0160(1) 2.02(4) 2.02(3)
44%  0.0792(1) 0.0490(1) 2.74(4) 2.73(4)
Autoregressive (II1C) p(9),p(p|P) IVC3 VE3 53% 0.0731(1) 0.0159(1) 2.16(3) 2.16(3)
43%  0.0790(1) 0.0489(1) 3.62(7) 3.60(7)
Fully Joint (IIID) (6, 0) IVC4 VB4 37%  0.0733(1) 0.0159(1) 4.98(11) 4.98(11)
31%  0.0791(1) 0.0490(1) 8.73(30) 8.67(30)

TABLE III. Sampling performance metrics and observables for all approaches, computed from 100 Markov chains with 10k
proposals each, where the first 1k are discarded for thermalization. For each model, the first row shows results obtained for
g = 0.1 and the second row for g = 0.3, respectively. For comparison, the values obtained with HMC listed in Table II are

consistent with the measurements from our models. Autocorrelation times 7*

are computed for each of the 100 chains and

then averaged, and errors are obtained with statistical jackknife. The results are discussed in more detail in Section V C. All
models except the autoregressive make use of even-odd preconditioning of the action.

W



Main Results: Bias analysis

’* ¢-marginal I Gibbs $ Autoregressive 1 Fully Joint
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Summary

e Masked normalizing flows are a good family of models for 2D scalar fields
e They can incorporate translational symmetry and boundary conditions
e Introducing fermions add substantial complexity:

o Requires working with scalar-pseudo-fermion effective action

o Requires inversion and gradients of the operator DD* (expensive, can

have large condition number)

o
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U(N) and SU(N)
equivariant flows:
Sampling gauge and
fermion fields at
criticality
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Lattice Quantum Chromodynamics

n+z>_l Uu(n;rf/) l_n+ﬂ+z>

v | Q AUl i)

n_T Uuﬁ) T_n +i

Pu(@) = Ula,))U(x + o, )UN @ + 0, U (@,0)

S:=-5Y % % Re[%Tr(PMw))] =

sites x p=1v=p+1

p(U) x e PS5V o
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Abelian Gauge: U(1)
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Modelling Gauge fields with flows

Equivariant Flow-Based Sampling for Lattice Gauge Theory

Gurtej Kanwar ,1 Michael S. Albergo ,2 Denis Boyda ,1 Kyle Cranmer,2 Daniel C. Hackett ,1

Sébastien Racanif‘:re:,3 Danilo Jimenez Rezende ,3 and Phiala E. Shanahan’
'Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Center for Cosmology and Particle Physics, New York University, New York, New York 10003, USA
3DeepMind Technologies Limited, 5 New Street Square, London EC4A 3TW, United Kingdom

® (Received 1 April 2020; revised 14 August 2020; accepted 24 August 2020; published 15 September 2020)

We define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are
gauge invariant by construction. We demonstrate the application of this framework to U(1) gauge theory in
two spacetime dimensions, and find that, at small bare coupling, the approach is orders of magnitude more

efficient at sampling topological quantities than more traditional sampling procedures such as hybrid
Monte Carlo and heat bath.

DOI: 10.1103/PhysRevLett.125.121601
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SU(N) Yang-Mills Theory
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Modelling Gauge fields with flows

PHYSICAL REVIEW D 103, 074504 (2021)

Sampling using SU(N) gauge equivariant flows

Denis Boydaif:“f,"* Gurtej Kanwar@?,"'} Sébastien Racaniére,z"‘t Danilo Jimenez Reze:nde@,z‘§ Michael S. Albergo’CD,3
Kyle Cranmer,” Daniel C. Hackett®,' and Phiala E. Shanahan'

'Center for Theoretical Physics, Massachusetts Institute of Technology,
| Cambridge, Massachusetts 02139, USA
“DeepMind, London N1C 4AG, United Kingdom
ICenter for Cosmology and Particle Physics, New York University, New York, New York 10003, USA

® (Received 24 September 2020; accepted 16 March 2021; published 20 April 2021)

We develop a flow-based sampling algorithm for SU(N) lattice gauge theories that is gauge invariant by
construction. Our key contribution is constructing a class of flows on an SU(N) variable [or on a U(N)
variable by a simple alternative] that respects matrix conjugation symmetry. We apply this technique to

sample distributions of single SU(N) variables and to construct flow-based samplers for SU(2) and SU(3)
lattice gauge theory in two dimensions.

DOI: 10.1103/PhysRevD.103.074504
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Continuous symmetries: Gauge transformations

U.(x) = Qx)U,(z)2(z + )T
Py (x) = Qz) Py (z)Q(z)]

TrP,, (z) — 'ITQ(:E)PW(x)Q(a:)T
~ TeP, (2)02) ()
= TrPy,(z)
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General architecture: Pure-Gauge equivariant flow

~

Simple Gauge
Invariant Density

~

(e.g. Haar measure

\

on SU(3))

)

Gauge Equivariant
Diffeo

Complex Gauge
Invariant Density

O



Haar measure on SU(3)

X € SU(3)
et 0 0
X=A| 0 €% 0
0 0 etts

Haar(X) oc [ | le" — % |?
1>]

__Haar SU(3)




nt Flow

Gauge Equivaria

Uu(z) = Q@)Uu(2)Q(z + 2)'
Y (z) = Q(2)Yu(2)Qz + 1)

O



Gauge Equivariant Flow
Let h be an invertible map such that

h:SU(N) — SU(N)
h(Qu(az)X“(x)Q“(x)T) — Qu(x)h(Xu(az))Q“(x)T
f(Xu(m)) = h(PNV(x))SILV(x)T
ware S, (@) = Xu(2) P ()

is equivariant to Gauge transformations @



Gauge Equivariant Flow

This reduces the problem to finding a flow h such that

h:SU(N) — SU(N)

This is a flow equivariant to matrix conjugation transformations

o



Matrix-conjugation equivariant flows on SU(N) and U(N)

This flow is equivariant to matrix-conjugation transformations

(X, D = diag(w)) = eigen(U)
Y = Xdiag(g(w)) X"

If g is a permutation-equivariant flow that preserves
unitarity (\prod g(w) =1 ) (o)
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Our approach: an onion flow

n+v Uu(n+10) n+ i+
- Conjugation equivariant
) flow on U(N), SU(N). Flow on a torus with a .
Uy(n) Uy(n+ f1) ’ _>
A Q A Bd Low dimensional group of finite symmetry group Flow on a simplex Flow on a box
symmetries.
n Uy(n) n+il

Haar SU(3) v A Q

V 49

e B
[ 5SS

0 eiOz :

K1

(o)




Building Equivariant flows: Permutation Equivariant Flows on
maximal toruses

Canonicalize -> Flow on cell -> Uncanonicalize

Haar SU(3) Haar SU(4) 3D projection
Haar SU(2) i o

Boyda, D., Kanwar, G., Racanieére, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling
using SU(N) gauge equivariant flows. arXiv preprint arXiv:2008.05456.

Bender, C., O'Connor, K., Li, Y., Garcia, J.J., Zaheer, M. and Oliva, J., 2019. Exchangeable Generative Models with Flow Scans. arXiv -
preprint arXiv:1902.01967.



Building Equivariant flows: Permutation Equivariant Flows

For special unitary groups permutation/Weyl equivariant
flows reduces to a flow on a N-simplex

Haar SU(3) @ @

Boyda, D., Kanwar, G., Racaniére, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling b’
using SU (N) gauge equivariant flows. arXiv preprint arXiv:2008.05456.



SU(3) Gauge equivariant flow

Input Configuration

=N

Up(@) Puo(z)

|
Eigen D p

Eigenvalues | (1L,
Extract Angle
Coordinates

iant Context

o3

: Flow in
Canonical Cell

Convolution and Masking Pattern
Gauge Flow at z in pv-plane
Spectral Flow

[3he

Recover Eigenvalues

[ane

EigenR

Plu(@)

U,(®) « B, (@)PL(2)U,(x)

N
U,l(a:)

Output Configuration ‘q
Boyda, D., Kanwar, G., Racaniére, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling
using $ SU (N) $ gauge equivariant flows. arXiv preprint arXiv:2008.05456.



TL;DR Gauge equivariant Flows

<> Matrix conjugation equivariant map

® Matrix product

(OXQN) = QO(X)QT

9
T

Private & Confidential

g (xx+ m)

U, ()¢, (x, x + )

o



High-level pure Gauge flow

U, (x)

I'(x, x + J1)

U, ()T(x, x + i)

o



Building Gauge Equivariant flows: SU(N>3) Gauge equivariant
flows: Simulating pure Gauge QCD

SU(3) SU(9)

c(0) c® c(®

WN . H
wﬂ . E
- 0 T -7 0 T - 0 T

105 104 10—3 102 101 100

cM c(2)

Hu

105 104 10—3 102 10—t 10° ‘q
Boyda, D., Kanwar, G., Racaniére, S., Rezende, D.J., Albergo, M.S., Cranmer, K., Hackett, D.C. and Shanahan, P.E., 2020. Sampling
using SU(N) gauge equivariant flows. arXiv preprint arXiv:2008.05456.
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Critical slowdown regime in 2D for U(1): Evidence of faster
mixing rates with flow-based MCMC

Q
; — HMC
0 — HB
—2 — Flow
_4 I

1 | 1 1 |
0 20000 40000 60000 80000 100000
Markov chain step
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Modelling Gauge & fermion fields with flows

Flow-based sampling in the lattice Schwinger model at criticality

Michael S. Albergo,! Denis Boyda,? 3 * Kyle Cranmer,! Daniel C. Hackett,>* Gurtej Kanwar,> 34
Sébastien Racaniére,® Danilo J. Rezende,® Fernando Romero-Lépez,® 4 Phiala E. Shanahan,? 4 and Julian M. Urban”

L Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA
2 Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont IL-60439, USA
3 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
“The NSF AI Institute for Artificial Intelligence and Fundamental Interactions
® Albert Einstein Center, Institute for Theoretical Physics, University of Bern, 3012 Bern, Switzerland
6 DeepMind, London, UK
" Institut fir Theoretische Physik, Universitit Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

Recent results suggest that flow-based algorithms may provide efficient sampling of field distri-
butions for lattice field theory applications, such as studies of quantum chromodynamics and the
Schwinger model. In this work, we provide a numerical demonstration of robust flow-based sam-
pling in the Schwinger model at the critical value of the fermion mass. In contrast, at the same

parameters, conventional methods fail to sample all parts of configuration space, leading to severely
underestimated uncertainties.
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Schwinger model at criticality
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Figure 3. Phase diagram for the 2-flavour model
for the 16 x 16 lattice (dashed lines to guide the
eye); the value for the 1-flavour model is from [7].



Schwinger model at critical mass: Evidence of faster mixing "*“""
rates with flow-based MCMC
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Modelling Gauge & fermion fields with flows

Gauge-equivariant flow models for sampling in lattice field theories with
pseudofermions
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This work presents gauge-equivariant architectures for flow-based sampling in fermionic lattice
field theories using pseudofermions as stochastic estimators for the fermionic determinant. This is the
default approach in state-of-the-art lattice field theory calculations, making this development critical
to the practical application of flow models to theories such as QCD. Methods by which flow-based
sampling approaches can be improved via standard techniques such as even/odd preconditioning
and the Hasenbusch factorization are also outlined. Numerical demonstrations in two-dimensional
U(1) and SU(3) gauge theories with Ny = 2 flavors of fermions are provided.
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Incorporating Quarks
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Continuous symmetries: Gauge transformations
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Parallel-transported fields
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ESS

Performance results (L=16, U(1) / SU(3) + fermions)
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Modelling Gauge & fermion fields with flows

Sampling QCD field configurations with gauge-equivariant
flow models
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Machine learning methods based on normalizing flows have been shown to address important
challenges, such as critical slowing-down and topological freezing, in the sampling of gauge field
configurations in simple lattice field theories. A critical question is whether this success will
translate to studies of QCD. This Proceedings presents a status update on advances in this area.
In particular, it is illustrated how recently developed algorithmic components may be combined
to construct flow-based sampling algorithms for QCD in four dimensions. The prospects and

challenges for future use of this approach in at-scale applications are summarized.
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Full QCD experiments (4D, L=4)

 Plaquette:
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where N = 3 is the number of colors, L = 4 is the extent of the lattice geometry, and P,
denotes the 1 x 1 Wilson loop which extends in the u and v directions;

» Polyakov loop:
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X X0
where Uj is the gauge link in the time direction;
* Pion correlation function:
Cr(x0) = = Y ([i@ysd] (x0, ) [dysul (0,0)), @
X
measured using point sources;
» Topological charge:
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Towards real calculations: Hadron Spectroscopy

Hadrons S Mesons are
Baryons e;ref @ @ 0 /d\ composed of one
c:mpose : L Cl quark and one
three quarks @ -
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Spectroscopy: From correlators to particle mass

Average over model samples
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Spectroscopy: From correlators to particle mass
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Pion mass vs model training
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How hard is to reach physically meaningful settings?
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Summary

We can construct flows with U(N) and SU(N) Gauge symmetry
In 2D results are quite promising
They can also be extended to include pseudo-fermion transformations
Based on Yukawa and Schwinger models, introducing fermions adds substantial
complexity:
o Require working with pseudo-fermion effective action
o Require inversion of the operator DD* (expensive, can have very large condition
number)
o Increased combinatorics:

m Much larger space of Gauge-invariant quantities to consider @
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Discussion




Summary

e Remarkable progress in the development of NFs for sampling and free energy
estimation (from LQCD to molecular systems).

e NFs allow us to address old problems in completely new ways by leveraging the
flexibility of neural networks.
e Challenges and limitations:
o Training and evaluating models without ground-truth samples

o Scaling up to larger and more complex systems
o Need more general and robust mechanisms to correct for model bias and
bound error of expectations @



