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1. What is string data, and why is it interesting”?
2. Applications of ML methods:

1. Optimizing vacua via genetic algorthms, reinforcement
learmning; optimization and representation.

2. Discovering symmetries in near-optimal vacua, from
forward maps.

3. Leamning CY metrics; differentiable programming for
strings, supersymmetry.



—orward, Reverse

UV ingredients ‘low”-energy physics

—
® [oday we will see that ML can help both “forward” and

‘reverse” directions of studying string theory.

® Forward map: advances in computing Calabi-Yau metrics,
dentifying symmetries in systems. ..

® [nverse map: how to pick UV ingredients that give specified
low-energy physics?



. What Is string data’”/

and why is it interesting?



VWhy Is string data interesting’?

® Unifying framework: string models for both particle physics ano
cosmology

0272,000

® Plenty of data! In various comers, 10°% or 1 metastable

ground states.

® Computational challenges: integers = NP-hard problems!

® Data is “pure”: analytic/noiseless descriptions of systems.
Symbolic regression a possibility?

® Data has interesting mathematical structure! Opportunity to
develop new models, explore exotic symmetries.



VWhy Is string data interesting’?

® Naiveté: computational methods have been often overlooked
N the string theory community, so it is likely significant
advances can still be made.



String Data

® [n 11D, string theory Is unigue. VWhen compactified to 10D, we
have a handful of (related) string theories.

® [here are many 4D vacua specified by a compactification:

N




L andscape of Geometries

® [he exact number of distinct CY manifolds is unknown, but it
S at the least huge.

® \/arious classes of constructions. For example, toric varieties.

® N Call 473,800,776 4d reflexive
polytopes A E 74 were constructed/classified.

® £ach “fine regular star tiangulation” of such a A gives a
toric variety in which the anticanonical hypersurface is a
smooth Calabi-Yau.



Irnangulations

® ine: uses all points

® Star: all simplices contain
origin

® Regular: descends from
Nigher-dimensional convex
Null

regularity
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The 16 2d reflexive polytopes
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L andscape of Geometries

® Number of points in
holytope: Al + 4

® Number of tiangulations =
grows combinatorially: =
4V — 1 ;

Nerst <\, 1
h>" + 3 ;

® Symmetry was a hint of x =20 = h>h

Mirror symmetry.

max
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| andscape of Fluxes

® [ix the interal space.

® [nteger fluxes are subject to
Flux 1 boundedness condition
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" Ny < L.~ O(10 — 100)

© O O O O ® @) @) (o} (o] D

e Number of fluxes ~ O(100)

)# fluxes N 10500

® SO (L

max

F-theory: 3 geometry with 10772990 flux choices
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The Shape of

—-lux Vacua

® Despite the enormous number of vacua, existence of states with
specific properties is not guaranteed. Most regions are “voids”
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Intersecting prane lanascape
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® |ntersecting branes lead to non-Abelian gauge groups, chiral
fermions.

® Simple toroidal model, count via dynamic programming =
~ 215 x 10” distinct vacua

13



Cooking with strings

geometry  fluxes oranes

® Question: how to arrange “redlistic”
vacuum?®

® Brute force search impossible: the string

landscape is large and complex. our

Universe”?




Computational Gomplexity

NP-Hard

® |n this regime, computational

complexity (scaling of algorithms with

iNput size) is important.

® ~inding specific vacua iIs NP-complete

(I.e. hard, probably exponentially!) in toy
models

)

® (. does string theory realize “worst-case’

instances of these problems, or is there
more structure’” Can we circumvent
complexity”?




Machine Learning for Combinatorial Optimization:
a Methodological Tour d’Horizon*

Yoshua Bengio®®, Andrea Lodi'*, and Antoine Prouvost's

® Computational complexity not always a death sentence:

Imagine a delivery company in Montreal that needs to solve TSPs. Every
day, the customers may vary, but usually, many are downtown and few on
top of the Mont Royal mountain. Furthermore, Montreal streets are laid on
a grid, making the distances close to the ¢; distance. How close? Not as
much as Phoenix, but certainly more than Paris. The company does not care
about solving all possible TSPs, but only theirs. Explicitly defining what
makes a TSP a likely one for the company is tedious, does not scale, and it
is not clear how it can be leveraged when explicitly writing an optimization
algorithm. We would like to automatically specialize TSP algorithms for

this company.
Q ]@\J

can we discover favorable structure in string data?
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Vacua with Small Flux Superpotential

Mehmet Demirtas Manki Kim Liam McAllister and Jakob Moritz@
Department of Physics, Cornell University, Ithaca, NY 14853, USA
(Dated: February 4, 2020)

We describe a method for finding flux vacua of type IIB string theory in which the Gukov-Vafa-
Witten superpotential is exponentially small. We present an example with Wy ~ 2 x 107® on an
orientifold of a Calabi-Yau hypersurface with (h''!, h*>') = (2,272), at large complex structure and
weak string coupling.

Wo :I\/g<elc/2/XG/\Q>.

Vacua with |Wy| < 1 are rare elements in a large
landscape. It is therefore impractical to exhibit vacua
with |Wy| < 1 by enumerating general vacua on a mas-
sive scale and filtering out the desired ones. Instead one
should pursue algorithms that preferentially find fluxes
that lead to vacua with small |[Wp|.

Introduce trick: solve approximate EOM, imposing | Wol = 0 in “large complex structure limit”
Then include small corrections for actual EOM, leadingto O < | W, | < 1.

String theory has special structure that can be exploited!



Representation and Optimization

® \\'nen should a local search be feasipble” Some intuition via fithess-distance
correlation (FDC):

1 ZN: (f — )d; — d) f: fitness

FDC = N d;: distance to optimum

; GfG i

® Fitness is easy to max/minimize if f; and d; are anti/correlated, or | FDC| ~ 1.

® Note that FDC depends on encoding, or representation.

® Connection to dualities (see ). For nearest-neighbor Ising
k
mode FDCneighbor ~—0.3
FDC,, ... = — 1 — €asier 1o minimize energy via

local operations



Easily Searched Encodings for Number Partitioning

Wheeler Ruml

ruml@das.harvard.edu

et al.

Harvard Unwversity, Cambridge, Massachusetts

Abstract

Can stochastic search algorithms outperform existing deterministic heuristics for the NP-hard
problem NUMBER PARTITIONING if given a sufficient, but practically realizable amount of time? In

a thorough empirical investigation using a straightforward implementation ol one such algorithin,

simulated annealing, Johnson et al. (1991) concluded tentatively that the answer is “no.”

In_this )cL)el \ve%how thdtthe dus\vm can be “\es’

if thtntln is devotelto helsxu of

UMBER ) ‘ATITIONING \Vlth"ploblem IIlbtcLIlLeb conblbtlng of multlple—pleublon mLeger dlawn
from a uniform probability distribution. With these instances and with an appropriate choice of
representation, stochastic and deterministic searches can—routinely and in a practical amount of
time—Iind solutions several orders ol magnitude better than those constructed by the best heuristic
known (Karmarkar and Karp, 1982), which does not employ searching.

The choice of encoding is found to be more important than the choice of search technique in
determining search efficacy. Three alternative explanations for the relative performance of the en-
codings are tested experimentally. The best encodings tested are found to contain a high proportion
of good solutions; moreover, in those encodings, the solutions are organized into a single “bumpy
funnel” centered at a known position in the search space. This is likely to be the only relevant
structure in the search space because a blind search performs as well as any other search technique
tested when the search space is restricted to the funnel tip.

We also show how analogous representations might be designed in a principled manner for

other difficult combinatorial optimization problems by applying the principles of parameterized
arbitration, parameterized constraint, and parameterized greediness.



Pure Data

nature > articles > article a
Article | Open Access | Published: 01 December 2021 2
Advancing mathematics by guiding human
intuition with Al :
S
Alex Davies &, Petar Veli¢kovié, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomasev, §

Richard Tanburn, Peter Battaglia, Charles Blundell, Andras Juhdsz, Marc Lackenby, Geordie

Williamson, Demis Hassabis & Pushmeet Kohli
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Pure Data

PySR: High-Performance Symbolic Regression in

Python

Symbolic formula as tree, optimize via genetic algorithm

Application to gravitational waves: \Wong and Cranmer

Automated discovery of interpretable gravitational-wave population models

Complexity Score Loss Expression for Rate[yr—*|(M = M /M)

16 0.126 0.212  3.72Cond (M — 9.27,0.9™) + 3.72Gauss(0.52M — 4.85)

25 0.501  0.0352 3.89 (Gauss(0.19M — 6.54) + 0.45) Cond (M — 9.12,0.91M)
+ 3.89Gauss(0.5M — 4.8)

438 0.00771 0.0108 (Cond(M — 9.42,0.62 - 0.9M) + 1.44Gauss(0.51M — 4.88))

X (5.11Gauss(0.06M — 4.67) + 7.82Gauss(0.17M — 5.86) + 3.26)

Table 1. Expressions obtained through symbolic regression with PySR. In the search we perform, there are 30 equations with different
complexities. We select three representative equations from the Pareto front by setting three successive complexity ranges, and selecting
the highest scoring expression in each range.

what can we learn about “noiseless” string data?



1. Applications



Optimization



Optimization

® Secarch problem: find x such that

Jx) =y

® [N other words minimize

L(x) = d(f(x), o)

® | ack of gradients (e.qg. integer
optimization), local minima make
this difficult.




Genetic Algorithms

population

® (Genetic algorithm . model
dynamics after natural selection.

1. Generate a population of candidate
solutions.

selection
2. Parents are selected according to

their fitness. CrOSSOver
.

3. Parents breed: their genotypes are
combined according to some Utation

oredefined set of operators.

\4

4. Children mutate with some probability.

Repeat 2-4 with children replacing parents.



Optimizing Flux Vacua

integers moduli vevs

® [ype IIB flux vacua: integer fluxes (F3, H3) = pw—o ({#): (2, .-
stabilize complex structure modull
at specific values.

goal: find input that gives

® Goal' construct vacua with specific output

specific physical properties.

® |ntegers make life harder.

our mission



Breeding Flux Vacua

10000 size of nbhd
M 0.1 .
= 0.05 symmetric T6 = (Tz)3
0.01

M 0.005

8000

Task: search for g = 0.3

6000

4000

Population size

2000

p = 10000
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rapid two extrema
evolution compete
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Breeding Branes

® [Loges, Shiu’21]: genetic algorithms efficient at generating
consistent models with MSSM gauge group! Preliminary study
of landscape statistics.
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Reinforcement Learming

® R . agent interacts with environment and receives rewards. Actions
determined by policy . Policy a function of expected return given policy in
state, expected return given action in state Q(s, a).

® Balance between exploration (discover new strategies) and exploitation
(reward from known good strategy)

® Deep RL: use neural network to estimate e.g. Q.

-
B
Environment

:j Rewar
Interpreter
% &

Agent

Action



RL Tor flux vacua

® |Krippendorf, Kroepsch, Syvaeri ‘21]: train BL agent to find flux
vacua satisfying various criteria.

Comparision A3C (red) with metropolis (blue)
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[dentitying Symmetries



Towards Statistics

® Reduce sampling bias by combining data from GA and RL

® |dentified unexpected Z, symmetry relating near-optimal solutions!

60 - . RL
v v GAruns

A ]
Flux values

—20

=30




structured learning — symbolic regression (— expert inspection)

Discovering Symbolic Models from Deep Learning
with Inductive Biases

Miles Cranmer Alvaro Sanchez-Gonzalez? Peter Battaglia? Rui Xu!

Kyle Cranmer? David Spergel*:! Shirley Ho*3:1-°

Graph Neural Network Symbolic Equation
°
—_ A
N Predict Dynamics
< g0 » Ict Uynami / /V;_) ¢ A
» l » a; = M Z(l — 'Tij)T‘ij
b g

— ¢
—>
- 4
Y/ '
3 N Known spring law

Encourage Low-Dimensionality
Representation

Simple Particles

e —

P e 0/
Predict Properties @ ‘ e P 1 Cy+ M.
> o C% ° =P 0= Ot it L Gk G
NS g7 ’
8 \ @° Unknown Dark Matter
By 2 overdensity equation
Dtailed k © ®o

Dark Matter Simulation

Figure 1: A cartoon depicting how we extract physical equations from a dataset.



symmetries from symbolic flux vacua

® |Mmpose (super)symmetry,
nolomorphy for “FluxNet.” Root-
finding Is differentiable.

-0.4 -0.2 0.0 0.2 0.4

® Symbolic regression on Rel)
individual components/ - ‘

networks.
AN ST

dentity SL(2,2) by /
supsegquent inspection. ®4

PySRRegressor.equations = [

pick score equation \
0.000000 0.14616045
0.028663 (x0 *x 0.04347339)
0.030676 ((x0 *x x2) * 0.011989505)
0.127443 (((x1 + x2) * 0.03578272) * x3)
0.464303 (((x0 * x2) + (x1 * x3)) * 0.029397454) together, this suggests that the overall result is
0.602903 (((x0 * (x2 + 0.21638234)) + (x1 * x3)) * 0.05... X0X2 + X1X3
0.012178 (((((x2 + 0.2579701) * x@) + (x1 * x3)) * 0.05... S e
0.001296 ((((x0 * (x2 + 0.21638234)) + ((x1 * x3) * 0.9... X5+ X

again we drop the small term, giving us &~ 0.05(xox2 + x1x3)

0
1
2
3
4
5
6
7
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Moduli-dependent Calabi-Yau and SU (3)-structure metrics

from Machine Learning

Lara B. Anderson®!, Mathis Gerdes®?2, James Gray *3, Sven Krippendorf®4,
Nikhil Raghuram %%, Fabian Ruehle ©%5

o
Model | ~UL v Model i
4 1 - |7 8ab
learnable parameters 6 () Z learnable parameters ¢
Z
, S

8ab

® Explicit CY metrics hard to construct w/ conventional methods.
They can tell us interesting physics (Yukawa couplings...)

e Q: where 1o put flexible ansatz Modely?

® Sven can tell us more detalls :-)
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2020 NeurlPS tutorial on Deep Implicit Layers

7= il o)

0 5 : f(r
“lidden/Output

Deep Implicit Layers - Neural ODEs, Deep
Equilibirum Models, and Beyond

This web page is the companion website to our NeurlPS 2020 tutorial, created by Zico
Kolter, David Duvenaud, and Matt Johnson. The page constain notes to accompany our
tutorial (all created via Colab notebooks, which you can experiment with as you like), as
well as links to our video presentation as slides. This web page will be under development
until the official scheduled time of the tutorial (December 7, 1:30pm PT), and may undergo
additional changes after that time.

e.g. root-finding is differentiable! When is this a useful inductive bias?

N.B. this also means that gradient descent is feasible for continuous generalizations
of search problems in string theory!
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SATNet: Bridging deep learning and logical reasoning using a differentiable
satisfiability solver

Po-Wei Wang ! Priya L. Donti'? Bryan Wilder® Zico Kolter !+

z, € [0,1] m v, € RF ) SDP r?laxation > Vo € Rk I__.r.o__n_d_r\} z, € [0,1]

fortreZ fortreZ (weights S) foroe O '—---u---ba’ foroe (O
Relaxed inputs Relaxed outputs
Inputs (discrete Outputs (discrete

or probabilistic) MAXSAT Layer or probabilistic)

SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

Model Train Test Model Train Test Model Train Test
ConvNet 72.6% 0.04% ConvNet 0% 0% ConvNet 0.31% 0%
ConvNetMask 914% 15.1% ConvNetMask 0.01% 0% ConvNetMask 89% 0.1%
SATNet (ours) 99.8% 98.3% SATNet (ours) 99.7% 98.3% SATNet (ours) 93.6% 63.2%
(a) Original Sudoku. (b) Permuted Sudoku. (c) Visual Sudoku. (Note: the theoretical
“best” test accuracy for our architecture is
74.7%.)

Hard constraints like Sudoku also present in string theory (tadpole cancellation...)



Il. Outlook



® [he string landscape presents us with a "big data” problem —
we stand to benefit from novel computational approaches.

® Gradient-free optimization via genetic algorithms and
reinforcement learning. not only identify “interesting

recipes,” but also explore statistics near optimal states

® [nterplay between optimization and representation

® String theory presents novel data for testing ML approaches
and developing new computational insights.



| ooKing forward

® |dentifying the proper ML methods (inductive biases etc.) for
studying string-theoretic data remains an open guestion.

® Incorporate modular groups like SL(2,Z)? Develop
symbolic methods”? Impose supersymmetry constraints”?
Implicit layers for constrained optimization”/

® \/\/nat structures are lurking in the data” Can we come up
with better organizing principles for the landscape and string
data”/
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