

Outline

Realizing Artificial Gauge Fields

Realizing the Hoftstadter &

1 (2)

3

Measuring Chern Numbers through

Quantum Spin Hall Hamiltonian

Bulk Topological Currents Probing Meissner Currents in Flux Ladders

Probing Topological Features of Bloch Bands

Probing Zak Phases in Topological Bands

Probing Band Topology using Atom Interferometry 'Aharonov Bohm', 'Wilson Loops' & 'Stückelberg'

Realizing Artificial Gauge Fields in Optical Lattices

Controlling atom tunneling along x with Raman lasers leads to effective tunnel coupling with spatially-dependent Peierls phase ()

Assume uniformly filled band and rational flux p/q:

Summary and Outlook

New detection method for probability currents

- ▶ Measurement of Chiral Edge States in Ladders (also possible locally!!)
- ▶ Identification of Meissner-like effect in bosonic ladder

Outlook:

- Entering the strongly correlated regime
- Chiral Mott Insulators
- Spin Meissner effect
- Connection of chiral ladder states to Hoftstadter model edge states
- Spin-Orbit Coupling in ID

E. Orignac & T. Giamarchi PRB 64, 144515 (2001) Dhar,A et al., PRA 85, 041602 (2012) Petrescu,A. & Le Hur, K. PRL 111, 150601 (2013) A Tokuno & A Georges, NJP 16, 073005 (2014) R. Wei & E. Mueller PRA 89, 063617 (2014) S. Greschner et al. arXiv:1504.06564 (2015) M. Piraud, F. Heidrich-Meisner, et al. Phys. Rev. B 91, 140406(R) (2015)

www.guantum-municl

Interferometer Performance	
Berry curvature spread	$< 6 \times \ 0^{-4}$ pi-flux localized to 10^-6 of Brillouin zone
A-B site offset	$< h \times 12$ z
Energy gap/Band width	3×0^{-3}

Multiple Bands Stückelberg to Wilson Lines

2D Berry Curvature Interferometer Team

Lucia Duca

Tracy Li

Monika Schleier-Smith

IB

Martin Reitter

Ulrich Schneider