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Atoms = moving 2-level systems



• Consider an atom in a laser field (dipole approximation)

Ĥatom =
p̂2

2M
+ ωg︸︷︷︸

=0

|g〉〈g|+
∑
j

ωj |ej〉〈ej |,

Ĥdip = d̂ · E(x, t) + h.c., d̂ : dipole operator, E(x, t) = E(x)ε exp(−iωLt)

• Simplification : two levels, |g〉 and |e〉, entering the problem (ω0 ≈ ωL)

Ĥtot =
p̂2

2M
+ ω0|e〉〈e|+

1

2
κ(x)e±iωLt|e〉〈g|+ h.c.,

κ(x) = 2E(x) ε · 〈e|d̂|g〉 : Rabi frequency

• Effective Hamiltonian (rotating frame at ωL+ Rotating Wave Approximation)

Ĥeff =
p̂2

2M
+ Ûcoupl(x), Ûcoupl(x) =

1

2

(
∆ κ∗

κ −∆

)
, ∆(x) = ωL − ω0(x) : detuning

• Same expression for stimulated Raman transitions between ground-state
(Zeeman) sub-levels |g1〉 and |g2〉 : κ = κ1κ∗2/2∆e
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• Atom-light coupling Hamiltonian

Ĥeff =
p̂2

2M
+ Ûcoupl(x), Ûcoupl(x) =

1

2

(
∆ κ∗

κ −∆

)
, ∆(x) = ωL − ω0(x) : detuning

• It is convenient to re-write the coupling term as

Ûcoupl(x) =
Ω

2

(
cos θ sin θ e−iφ

sin θ eiφ − cos θ

)
,

Ω =
√

∆2 + |κ|2, cos θ =
∆

Ω
, sin θ =

|κ|
Ω
, κ = |κ|eiφ

• The eigenvalues are ε1,2(x) = ±Ω(x)/2 and eigenstates |χ1,2(x)〉

• Born-Oppenheimer approx. (Ω�) : we project the dynamics onto a single |χ1(x)〉

|Ψ(x, t)〉 =
∑
j=1,2

ψj(x, t)|χj(r)〉 ≈ ψ1(x, t)|χ1(r)〉

i∂tψ1(x, t) =

{
(p̂−A)2

2M
+ . . .

}
ψ1(x, t), A = i〈χ1|∇χ1〉 =

1

2
(cos θ − 1)∇φ
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Ĥeff =
p̂2

2M
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• Born-Oppenheimer approx. (Ω�) : we project the dynamics onto a given |χ1(x)〉

|Ψ(x, t)〉 =
∑
j=1,2

ψj(x, t)|χj(r)〉 ≈ ψ1(x, t)|χ1(r)〉

i∂tψ1(x, t) =

{
(p̂−A)2

2M
+ . . .

}
ψ1(x, t), A = i〈χ1|∇χ1〉 =

1

2
(cos θ − 1)∇φ

• The Berry connection A gives rise to an effective magnetic field

B = ∇×A =
1

2
∇ (cos θ)×∇φ, B 6= 0 −→∇θ 6= 0, tan θ = |κ|/∆

• The effective magnetic field is non-zero when creating a gradient of κ(x) or ∆(x)

• NIST exp [Spielman et al.] : gradient of ∆(x) using a magnetic field gradient

Spielman et al. ʻ09
• More dressed states ? One can create spin-orbit coupling Ajk = i〈χj |∇χk〉 ...
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Internal states in optical lattices: laser-induced tunneling



• Optical dipole potentials : Vσ(x) = α(λ;σ)|E(x)|2 → state-dependent lattices !
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• Let us assume |Vg,e| � ER : no bare hopping Jgx , Jex ≈ 0

• We couple the two internal states |g〉 and |e〉 using a resonant light ωL = ωge :

Ûcoupl =
1

2
κ(x)|e〉〈g|+h.c. =

1

2
Ω eik·x|e〉〈g|+h.c., where we set E(x) = eik·x

• Jaksch & Zoller [NJP ’03] : In the Wannier-states basis {|j; g〉, |k; e〉}

Jeff
j→k = 〈j; g|Ûcoupl|k; e〉 =

Ω

2

∫
wg(x− xj)we(x− xk)eik·rd2x = Jeff

0 eik·xj

Hopping amplitude : Jeff
0 =

∫
wg(x− a)we(x)eik·rd2x, a = xk − xj
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• Let us add a state-independent lattice along y

• Setting k = kyey → the Harper-Hofstadter model [Jaksch & Zoller, NJP ’03]

: uniform flux per plaquette 
  (in units of flux quantum)

energy

• Under the carpet here : the flux had to be rectified [see J-Z, Gerbier-Dalibard ’10]
• The synthetic flux is given by α = kydy/2π ∼ 1

• Reminder : α ∼ 1↔ B ∼ 104T in (cond-mat) systems with d ∼ 10−10m

• The same idea can be used to generate the Haldane model [Anisimovas PRA ’14]
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• J-Z scheme : state-dependent lattice along x + laser coupling + lattice along y

• But why do we need the lattice along x after all ?

• Let us consider the atom-light coupling Hamiltonian only (no lattice) :

Ûcoupl =
1

2
κ(x)|e〉〈g|+h.c. =

1

2
Ω eik·x|e〉〈g|+h.c., where we set E(x) = eik·x

• We can interpret it as a “hopping” term along the internal-state dimension

Ûcoupl = Jsynth e
ik·x |1〉〈2|+ h.c., with “hopping” amplitude : Jsynth = Ω/2

• Let us add a 1D (state-independent) optical lattice along y and set k = kyey :

2D synthetic ladder
with a synthetic magnetic flux
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Synthetic dimensions: From 2D to 4D quantum Hall effects



• The full Harper-Hofstadter lattice with a synthetic dimension ? More states ?

• We have to extend our atom-light problem to N > 2 internal states

Ĥatom =
p̂2

2M
+ ωg︸︷︷︸

=0

|g〉〈g|+
N−1∑
j=1

ωj |ej〉〈ej |,

Ĥdip = d̂ · E(x, t) + h.c., d̂ : dipole operator, E(x, t) = E(x)ε exp(−iωLt)

[Goldman, Juzeliunas, Ohberg, Spielman, Rep. Prog. Phys. ’14]

• Consider Zeeman sublevels |mF 〉 in the GS manifold (total angular moment. F )
Shifted by a real magnetic field : ωj+1 − ωj = δω0 = constant

• A Raman-coupling configuration, with ω1 − ω2 = δω0 and k1 − k2 = kR, gives

Ĥeff =
ΩR

2

(
F̂+e

ikR·x + F̂−e
−ikR·x

)
, F̂± = F̂x ± iF̂y : ladder operators

F̂+|mF 〉 = gF,mF |mF + 1〉, gF,mF =
√
F (F + 1)−mF (mF + 1)
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Ĥeff =
ΩR

2

(
F̂+e

ikR·x + F̂−e
−ikR·x

)
, F̂± = F̂x ± iF̂y : ladder operators

F̂+|mF 〉 = gF,mF |mF + 1〉, gF,mF =
√
F (F + 1)−mF (mF + 1)
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Synthetic lattice and topological edge states
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See also D. Hügel and B. Paredes, arXiv :1306.1190 (2013).



Three internal states and the edge states
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• Experimental results in 2015 ! arXiv :1502.02495 and arXiv :1502.02496

Observation of chiral edge states with neutral fermions in synthetic Hall ribbons

M. Mancini1, G. Pagano1, G. Cappellini2, L. Livi2, M. Rider5,6

J. Catani3,2, C. Sias3,2, P. Zoller5,6, M. Inguscio4,1,2, M. Dalmonte5,6, L. Fallani1,2

1Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
2LENS European Laboratory for Nonlinear Spectroscopy, 50019 Sesto Fiorentino, Italy

3INO-CNR Istituto Nazionale di Ottica del CNR, Sezione di Sesto Fiorentino, 50019 Sesto Fiorentino, Italy
4INRIM Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy

5Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
6Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria

Chiral edge states are a hallmark of quantum Hall physics. In electronic systems, they appear as a
macroscopic consequence of the cyclotron orbits induced by a magnetic field, which are naturally
truncated at the physical boundary of the sample. Here we report on the experimental realization of
chiral edge states in a ribbon geometry with an ultracold gas of neutral fermions subjected to an
artificial gauge field. By imaging individual sites along a synthetic dimension, we detect the existence
of the edge states, investigate the onset of chirality as a function of the bulk-edge coupling, and
observe the edge-cyclotron orbits induced during a quench dynamics. The realization of fermionic
chiral edge states is a fundamental achievement, which opens the door towards experiments including
edge state interferometry and the study of non-Abelian anyons in atomic systems.

Ultracold atoms in optical lattices represent an ideal
platform to investigate the physics of condensed-matter
problems in a fully tunable, controllable environment [1, 2].
One of the remarkable achievements in recent years has
been the realization of synthetic background gauge fields,
akin to magnetic fields in electronic systems. Indeed, by
exploiting light-matter interaction, it is possible to imprint
a Peierls phase onto the atomic wavefunction, which is
analogous to the Aharanov-Bohm phase experienced by
a charged particle in a magnetic field [3–5]. These gauge
fields, first synthesized in Bose-Einstein condensates [6],
have recently allowed for the realization of the Harper-
Hofstadter Hamiltonian in ultracold bosonic 2D lattice
gases [7, 8], paving the way towards the investigation
of di↵erent forms of bulk topological matter in bosonic
atomic systems [5, 9]. In the present work we are instead
interested in the edge properties of fermionic systems
under the e↵ects of a synthetic gauge field. Fermionic edge
states are a fundamental feature of 2D topological states of
matter, such as quantum Hall and chiral spin liquids [10,
11]. Moreover, they are robust against changing the
geometry of the system by keeping its topology, and can be
observed even on Hall ribbons [12]. In addition, they o↵er
very attractive perspectives in quantum science, such as
the realization of robust quantum information buses [13],
and they are ideal starting points for the realization of
non-Abelian anyons akin to Majorana fermions [14, 15].

Here, we report the observation of chiral edge states
in a system of neutral fermions subjected to a synthetic
magnetic field. We exploit the high level of control in
our system to investigate the emergence of chirality as a
function of the Hamiltonian couplings. These results have
been enabled by an innovative experimental approach,
where an internal (nuclear spin) degree of freedom of the
atoms is used to encode a lattice structure lying in an
“extra dimension” [12], providing direct access to edge
physics. In addition, we validate the chiral nature of our

FIG. 1. A synthetic gauge field in a synthetic dimen-
sion. a. We confine the motion of fermionic ultracold atoms
in a hybrid lattice, generated by an optical lattice along a real
direction x̂ with tunneling t, and by a laser-induced hopping
between spin states along a synthetic direction m̂. By inducing
a complex tunneling ⌦1,2e

i'j along m̂, the atom wavefunction
acquires a phase ' per plaquette, mimicking the e↵ect of a
transverse magnetic field B on e↵ectively charged particles. b.
Scheme of the 173Yb nuclear spin states and Raman transitions
used in the experiment.

system by performing quench dynamics, demonstrating
how the particle motion shows edge-cyclotron orbits [16].

We synthesize a system of fermionic particles in an
atomic Hall ribbon of tunable width pierced by an e↵ec-
tive gauge field. One dimension is realized by an optical
lattice, which induces a real tunneling t between di↵er-
ent sites along direction x̂ (see Fig. 1a). The di↵erent
internal spin states are coupled by a two-photon Raman
transition, which provides a coherent controllable cou-
pling ⌦ei'x between di↵erent spin components. This can
be interpreted as a complex tunneling amplitude between
adjacent sites of an ”extra-dimensional” lattice [12, 17].
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Visualizing edge states with an atomic Bose gas in the
quantum Hall regime

B. K. Stuhl1,⇤, H.-I Lu1,⇤, L. M. Aycock1,2, D. Genkina1, and I. B. Spielman1,†

1Joint Quantum Institute
National Institute of Standards and Technology, and University of Maryland

Gaithersburg, Maryland, 20899, USA
2Cornell University

Ithaca, New York, 14850, USA

⇤These authors contributed equally to this work.
†To whom correspondence should be addressed; E-mail: ian.spielman@nist.gov.

We engineered a two-dimensional magnetic lattice in an elongated strip geom-

etry, with effective per-plaquette flux ⇡ 4/3 times the flux quanta. We imaged

the localized edge and bulk states of atomic Bose-Einstein condensates in this

strip, with single lattice-site resolution along the narrow direction. Further, we

observed both the skipping orbits of excited atoms traveling down our system’s

edges, analogues to edge magnetoplasmons in 2-D electron systems (1, 2), and

a dynamical Hall effect for bulk excitations (3). Our lattice’s long direction

consisted of the sites of an optical lattice and its narrow direction consisted of

the internal atomic spin states (4,5). Our technique has minimal heating, a fea-

ture that will be important for spectroscopic measurements of the Hofstadter

butterfly (4, 6) and realizations of Laughlin’s charge pump (7).
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4D Physics with Cold Atoms

H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, N. Goldman, arXiv:1505.04387



Beyond the Chern-number measurement...

• What if we combine the electric field Eµ with a perturbing magnetic field B ?

ṙµ(k) =
∂E(k)

∂kµ
− k̇νΩµν(k) (1)

k̇µ = −Eµ−ṙνBµν ; Bµν = ∂µAν − ∂νAµ see Xiao et al. RMP ’10, Gao et al. arXiv :1411.0324

• Let us insert k̇µ into (1) :

ṙµ(k) =
∂E(k)

∂kµ
+ EνΩµν(k) + ṙγBνγΩµν(k)

=
∂E(k)

∂kµ
+ EνΩµν(k) +

(
∂E(k)

∂kγ
+ EδΩ

γδ(k) + ṙαBδαΩγδ(k)

)
BνγΩµν(k)

≈ ∂E(k)

∂kµ
+ EνΩµν(k) +

∂E(k)

∂kγ
BνγΩµν(k) + Ωγδ(k)Ωµν(k)EδBνγ + . . .

→ Combining E and B produces a term ∼ Ω2

• This raises two questions :

• What if we fill the band ? Is there (still) a quantized response ?

• Is there a topological invariant
∫

Ω2 =
∫

Ω ∧ Ω ?
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Some hints from mathematics... see the book by Nakahara

• The curvature is a two-form

Ω =
1

2
Ωµνdkµ ∧ dkν 6= 0 for dim(M) ≥ 2

• Taking the square produces a four-form

Ω2 = Ω ∧ Ω =
1

4
ΩµνΩγδ dkµ ∧ dkν ∧ dkγ ∧ dkδ 6= 0 for dim(M) ≥ 4

• Given a curvature Ω, one defines the Chern character

ch(Ω) =
∑
j=1

1

j!
Tr
(

Ω

2π

)j
=

1

2π
Tr Ω +

1

8π2
Tr Ω2 + . . .

• In 2D : ch(Ω) = 1
2π Tr Ω

−→ the first Chern number : ν1 = 1
2π

∫
M Tr Ω

• In 4D : ch(Ω) = 1
2π Tr Ω + 1

8π2 Tr Ω2

−→ the second Chern number : ν2 = 1
8π2

∫
M Tr Ω2

• The second Chern number is associated with the 4D quantum Hall effect
see Zhang and Hu Science 2001 and Avron et al. PRL 1988 about 4D systems with TRS
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Back to the semi-classical equations

• We had the following equations of motion (valid for d = dimM≥ 1)

ṙµ(k) =
∂E(k)

∂kµ
+ EνΩµν(k) +

∂E(k)

∂kγ
BνγΩµν(k) + Ωγδ(k)Ωµν(k)EδBνγ

• Let us fill the band : vµtot =
∑

k ṙ
µ(k)

• Care is required in the presence of a magnetic field [see Xiao et al. PRL ’05, Bliokh PLA ’06]∑
k

6−→ V

(2π)d

∫
Td

ddk but
∑
k

−→ V

(2π)d

∫
Td

(
1 +

1

2
BµνΩµν

)
ddk for d = 2, 3

• For the 4D case, we found the following generalization :∑
k

−→ V

(2π)4

∫
T4

[
1 +

1

2
BµνΩµν +

1

64

(
εαβγδBαβBγδ

)(
εµνλρΩµνΩλρ

)]
d4k

• The total current density jµ =
∑

k ṙ
µ(k)/V is given by

jµ = Eν
1

(2π)4

∫
T4

Ωµνd4k +
ν2

4π2
εµαβνEνBαβ (µ = x, y, z, w)

where ν2 =
1

8π2

∫
T4

Ω2 =
1

4π2

∫
T4

ΩxyΩzw + ΩwxΩyz + ΩzxΩywd4k

In agreement with the topological-field-theory of Qi, Hughes, Zhang PRB ’08 for 4D TRS systems
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Introducing a 4D framework

• We want to investigate the transport equation

jµ = Eν
1

(2π)4

∫
T4

Ωµνd4k +
ν2

4π2
εµαβνEνBαβ

ν2 =
1

4π2

∫
T4

ΩxyΩzw + ΩwxΩyz + ΩzxΩywd4k

• In order to have ν2 6= 0, we look for a minimal 4D system with Ωzx,Ωyw 6= 0

−→ fluxes Φ1,2 in the x−z and y−w planes : two Hofstadter models.

hopping along a synthetic (internal-state) dimension
see Celi et al PRL ‘14
Mancini, arXiv:1502.02495 (LENS)
Stuhl arXiv:1502.02496 (NIST)

• Physical realization with cold atoms in a 3D optical lattice : Easy !
• A superlattice along z + resonant x−z-dependent time-modulation
• Raman transitions between internal states with recoil momentum along y
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• The energy spectrum displays a low-energy topological band [see Kraus et al. PRL ’13]
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The transport equations

• Let us come back to our transport equation, with Ωzx,Ωyw 6= 0

jµ = Eν
1

(2π)4

∫
T4

Ωµνd4k +
ν2

4π2
εµαβνEνBαβ , ν2 =

1

4π2

∫
T4

ΩzxΩywd4k

• We now choose an electric field E = Ey1y and a magnetic field Bαβ = Bzw

hopping along a synthetic (internal-state) dimension
see Celi et al PRL ‘14

where

(simply tune the Raman lasers!)

• The transport equations yield two non-trivial contributions :

jw = Ey
1

(2π)4

∫
T4

Ωwyd4k : linear response along w (∼ 2D QH effect)

jx =
ν2

4π2
EyBzw : non-linear response along x (∼ 4D QH effect)
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• The linear-response actually leads to a “fractional” quantum Hall effect :

jw = Ey
1

(2π)4

∫
T4

Ωwyd4k =
Ey

2π

(
1

2π

∫
T2

Ωwydkwdky
)

1

(2π)2

(∫
T2

dkxdkz
)

=
Ey

2π
νwy1 × 1

q
for a flux Φ1 = Φxz = p/q.

−→ σH = jw/Ey =
(
e2

h

)
ν
wy
1
q

: “fractional” Hall conductivity in the y−w plane

• Similar to the half-integer QH effect in 3D topological insulators [Xu et al. Nat. Phys. ’14]

• Could we test all these predictions ?
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Numerical simulations : the current density

• The transport equations yield two non-trivial contributions for Ey and Bzw :

jw =
Ey

2π
νwy1 × 1

q
for a flux Φ1 = Φxz = p/q

jx =
ν2

4π2
EyBzw : non-linear response along x (∼ 4D QH effect)

• We have calculated the current densities for Ey=−0.2J/a and Bzw/2π=−1/10

 

 

0 50 100 150 200 250 300

−8

−6

−4

−2

0

−3x 10

cu
rre

nt
 d

en
sit

y

time

2 4 6 8 10 12 14
0.2

0.4

0.6

0.8

1

 

time
0

(b)

(a)

• From these simulations : ν2≈−1.07 and νwy1 ≈−1.03



The center-of-mass drift : Numerical simulations

• The predicted center-of-mass drift along x (2nd-Chern-number response) :

vxc.m. = jxAcell = jx (4a× 4a× a× a) , for Φ1 = Φ2 = 1/4

=
( ν2

4π2
Ey ×Bzw

)
× 16a4 ≈ 2a/TB , TB = 2π/aEy ≈ 50ms

• We have calculated the COM trajectory for Ey=0.2J/a and Bzw/2π=−1/10
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• From these simulations : ν2≈−0.98

The 4D responses are of the same order
as the effects reported in Aidelsburger et al ’15 !
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