Creating and Probing Topological Matter with Cold Atoms: From Shaken Lattices to Synthetic Dimensions

Nathan Goldman

2015 Arnold Sommerfeld School, August-September 2015

Outline

Part 1: Shaking atoms!
Generating effective Hamiltonians: "Floquet" engineering
Topological matter by shaking atoms
Some final remarks about energy scales
Part 2: Seeing topology in the lab!
Loading atoms into topological bands
Anomalous velocity and Chern-number measurements
Seeing topological edge states with atoms
Part 3: Using internal atomic states!
Cold Atoms $=$ moving 2 -level systems
Internal states in optical lattices: laser-induced tunneling
Synthetic dimensions: From 2D to 4D quantum Hall effects

Part 3: Using internal atomic states

2015 Arnold Sommerfeld School, August-September 2015

Atoms $=$ moving 2 -level systems

- Consider an atom in a laser field (dipole approximation)

$$
\begin{aligned}
& \hat{H}_{\text {atom }}=\frac{\hat{p}^{2}}{2 M}+\underbrace{\omega_{g}}_{=0}|g\rangle\langle g|+\sum_{j} \omega_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|, \\
& \hat{H}_{\text {dip }}=\hat{\boldsymbol{d}} \cdot \mathcal{E}(\boldsymbol{x}, t)+\text { h.c. } \quad \hat{\boldsymbol{d}}: \text { dipole operator, } \quad \mathcal{E}(\boldsymbol{x}, t)=E(\boldsymbol{x}) \boldsymbol{\varepsilon} \exp \left(-i \omega_{\mathrm{L}} t\right)
\end{aligned}
$$

- Consider an atom in a laser field (dipole approximation)

$$
\begin{aligned}
& \hat{H}_{\text {atom }}=\frac{\hat{p}^{2}}{2 M}+\underbrace{\omega_{g}}_{=0}|g\rangle\langle g|+\sum_{j} \omega_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|, \\
& \hat{H}_{\text {dip }}=\hat{\boldsymbol{d}} \cdot \mathcal{E}(\boldsymbol{x}, t)+\text { h.c. } \quad \hat{\boldsymbol{d}}: \text { dipole operator, } \quad \mathcal{E}(\boldsymbol{x}, t)=E(\boldsymbol{x}) \boldsymbol{\varepsilon} \exp \left(-i \omega_{\mathrm{L}} t\right)
\end{aligned}
$$

- Simplification : two levels, $|g\rangle$ and $|e\rangle$, entering the problem ($\omega_{0} \approx \omega_{\mathrm{L}}$)

$$
\begin{aligned}
& \hat{H}_{\text {tot }}=\frac{\hat{p}^{2}}{2 M}+\omega_{0}|e\rangle\langle e|+\frac{1}{2} \kappa(\boldsymbol{x}) e^{ \pm i \omega_{\mathrm{L}} t}|e\rangle\langle g|+\text { h.c. }, \\
& \kappa(\boldsymbol{x})=2 E(\boldsymbol{x}) \boldsymbol{\varepsilon} \cdot\langle e| \hat{\boldsymbol{d}}|g\rangle: \text { Rabi frequency }
\end{aligned}
$$

- Consider an atom in a laser field (dipole approximation)

$$
\begin{aligned}
& \hat{H}_{\text {atom }}=\frac{\hat{p}^{2}}{2 M}+\underbrace{\omega_{g}}_{=0}|g\rangle\langle g|+\sum_{j} \omega_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|, \\
& \hat{H}_{\text {dip }}=\hat{\boldsymbol{d}} \cdot \mathcal{E}(\boldsymbol{x}, t)+\text { h.c., } \quad \hat{\boldsymbol{d}}: \text { dipole operator, } \quad \mathcal{E}(\boldsymbol{x}, t)=E(\boldsymbol{x}) \boldsymbol{\varepsilon} \exp \left(-i \omega_{\mathrm{L}} t\right)
\end{aligned}
$$

- Simplification : two levels, $|g\rangle$ and $|e\rangle$, entering the problem ($\omega_{0} \approx \omega_{\mathrm{L}}$)

$$
\begin{aligned}
& \hat{H}_{\text {tot }}=\frac{\hat{p}^{2}}{2 M}+\omega_{0}|e\rangle\langle e|+\frac{1}{2} \kappa(\boldsymbol{x}) e^{ \pm i \omega_{\mathrm{L}} t}|e\rangle\langle g|+\text { h.c., } \\
& \kappa(\boldsymbol{x})=2 E(\boldsymbol{x}) \boldsymbol{\varepsilon} \cdot\langle e| \hat{\boldsymbol{d}}|g\rangle: \text { Rabi frequency } \\
& \omega_{0}|e\rangle \\
& \omega_{\mathrm{L}}
\end{aligned}
$$

- Effective Hamiltonian (rotating frame at $\omega_{L}+$ Rotating Wave Approximation)

$$
\hat{H}_{\text {eff }}=\frac{\hat{p}^{2}}{2 M}+\hat{U}_{\text {coupl }}(\boldsymbol{x}), \quad \hat{U}_{\text {coupl }}(\boldsymbol{x})=\frac{1}{2}\left(\begin{array}{cc}
\Delta & \kappa^{*} \\
\kappa & -\Delta
\end{array}\right), \quad \Delta(\boldsymbol{x})=\omega_{\mathrm{L}}-\omega_{0}(\boldsymbol{x}): \text { detuning }
$$

- Consider an atom in a laser field (dipole approximation)

$$
\begin{aligned}
& \hat{H}_{\text {atom }}=\frac{\hat{p}^{2}}{2 M}+\underbrace{\omega_{g}}_{=0}|g\rangle\langle g|+\sum_{j} \omega_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|, \\
& \hat{H}_{\text {dip }}=\hat{\boldsymbol{d}} \cdot \mathcal{E}(\boldsymbol{x}, t)+\text { h.c., } \quad \hat{\boldsymbol{d}}: \text { dipole operator, } \quad \mathcal{E}(\boldsymbol{x}, t)=E(\boldsymbol{x}) \boldsymbol{\varepsilon} \exp \left(-i \omega_{\mathrm{L}} t\right)
\end{aligned}
$$

- Simplification : two levels, $|g\rangle$ and $|e\rangle$, entering the problem ($\omega_{0} \approx \omega_{\mathrm{L}}$)

$$
\begin{aligned}
& \hat{H}_{\text {tot }}=\frac{\hat{p}^{2}}{2 M}+\omega_{0}|e\rangle\langle e|+\frac{1}{2} \kappa(\boldsymbol{x}) e^{ \pm i \omega_{\mathrm{L}} t}|e\rangle\langle g|+\text { h.c. }, \\
& \kappa(\boldsymbol{x})=2 E(\boldsymbol{x}) \varepsilon \cdot\langle e| \hat{\boldsymbol{d}}|g\rangle: \text { Rabi frequency }
\end{aligned}
$$

- Effective Hamiltonian (rotating frame at $\omega_{\mathrm{L}}+$ Rotating Wave Approximation)

$$
\hat{H}_{\text {eff }}=\frac{\hat{p}^{2}}{2 M}+\hat{U}_{\text {coupl }}(\boldsymbol{x}), \quad \hat{U}_{\text {coupl }}(\boldsymbol{x})=\frac{1}{2}\left(\begin{array}{cc}
\Delta & \kappa^{*} \\
\kappa & -\Delta
\end{array}\right), \quad \Delta(\boldsymbol{x})=\omega_{\mathrm{L}}-\omega_{0}(\boldsymbol{x}): \text { detuning }
$$

- Same expression for stimulated Raman transitions between ground-state (Zeeman) sub-levels $\left|g_{1}\right\rangle$ and $\left|g_{2}\right\rangle: \kappa=\kappa_{1} \kappa_{2}^{*} / 2 \Delta_{e}$
- Atom-light coupling Hamiltonian

$$
\hat{H}_{\text {eff }}=\frac{\hat{p}^{2}}{2 M}+\hat{U}_{\text {coupl }}(\boldsymbol{x}), \quad \hat{U}_{\text {coupl }}(\boldsymbol{x})=\frac{1}{2}\left(\begin{array}{cc}
\Delta & \kappa^{*} \\
\kappa & -\Delta
\end{array}\right), \quad \Delta(\boldsymbol{x})=\omega_{\mathrm{L}}-\omega_{0}(\boldsymbol{x}): \text { detuning }
$$

- It is convenient to re-write the coupling term as

$$
\begin{aligned}
& \hat{U}_{\text {coupl }}(\boldsymbol{x})=\frac{\Omega}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \phi} \\
\sin \theta e^{i \phi} & -\cos \theta
\end{array}\right), \\
& \Omega=\sqrt{\Delta^{2}+|\kappa|^{2}}, \cos \theta=\frac{\Delta}{\Omega}, \sin \theta=\frac{|\kappa|}{\Omega}, \kappa=|\kappa| e^{i \phi}
\end{aligned}
$$

- The eigenvalues are $\varepsilon_{1,2}(\boldsymbol{x})= \pm \Omega(\boldsymbol{x}) / 2$ and eigenstates $\left|\chi_{1,2}(\boldsymbol{x})\right\rangle$

- Atom-light coupling Hamiltonian

$$
\hat{H}_{\text {eff }}=\frac{\hat{p}^{2}}{2 M}+\hat{U}_{\text {coupl }}(\boldsymbol{x}), \quad \hat{U}_{\text {coupl }}(\boldsymbol{x})=\frac{1}{2}\left(\begin{array}{cc}
\Delta & \kappa^{*} \\
\kappa & -\Delta
\end{array}\right), \quad \Delta(\boldsymbol{x})=\omega_{\mathrm{L}}-\omega_{0}(\boldsymbol{x}): \text { detuning }
$$

- It is convenient to re-write the coupling term as

$$
\begin{aligned}
& \hat{U}_{\text {coupl }}(\boldsymbol{x})=\frac{\Omega}{2}\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \phi} \\
\sin \theta e^{i \phi} & -\cos \theta
\end{array}\right), \\
& \Omega=\sqrt{\Delta^{2}+|\kappa|^{2}}, \cos \theta=\frac{\Delta}{\Omega}, \sin \theta=\frac{|\kappa|}{\Omega}, \kappa=|\kappa| e^{i \phi}
\end{aligned}
$$

- The eigenvalues are $\varepsilon_{1,2}(\boldsymbol{x})= \pm \Omega(\boldsymbol{x}) / 2$ and eigenstates $\left|\chi_{1,2}(\boldsymbol{x})\right\rangle$

- Born-Oppenheimer approx. $(\Omega \gg)$: we project the dynamics onto a single $\left|\chi_{1}(\boldsymbol{x})\right\rangle$

$$
\begin{aligned}
& |\Psi(\boldsymbol{x}, t)\rangle=\sum_{j=1,2} \psi_{j}(\boldsymbol{x}, t)\left|\chi_{j}(\boldsymbol{r})\right\rangle \approx \psi_{1}(\boldsymbol{x}, t)\left|\chi_{1}(\boldsymbol{r})\right\rangle \\
& i \partial_{t} \psi_{1}(\boldsymbol{x}, t)=\left\{\frac{(\hat{\boldsymbol{p}}-\boldsymbol{A})^{2}}{2 M}+\ldots\right\} \psi_{1}(\boldsymbol{x}, t), \quad \boldsymbol{A}=i\left\langle\chi_{1} \mid \nabla \chi_{1}\right\rangle=\frac{1}{2}(\cos \theta-1) \boldsymbol{\nabla} \phi
\end{aligned}
$$

- Born-Oppenheimer approx. $(\Omega \gg)$: we project the dynamics onto a given $\left|\chi_{1}(\boldsymbol{x})\right\rangle$

$$
\begin{aligned}
& |\Psi(\boldsymbol{x}, t)\rangle=\sum_{j=1,2} \psi_{j}(\boldsymbol{x}, t)\left|\chi_{j}(\boldsymbol{r})\right\rangle \approx \psi_{1}(\boldsymbol{x}, t)\left|\chi_{1}(\boldsymbol{r})\right\rangle \\
& i \partial_{t} \psi_{1}(\boldsymbol{x}, t)=\left\{\frac{(\hat{\boldsymbol{p}}-\boldsymbol{A})^{2}}{2 M}+\ldots\right\} \psi_{1}(\boldsymbol{x}, t), \quad \boldsymbol{A}=i\left\langle\chi_{1} \mid \nabla \chi_{1}\right\rangle=\frac{1}{2}(\cos \theta-1) \boldsymbol{\nabla} \phi
\end{aligned}
$$

- The Berry connection \boldsymbol{A} gives rise to an effective magnetic field

$$
\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}=\frac{1}{2} \boldsymbol{\nabla}(\cos \theta) \times \boldsymbol{\nabla} \phi, \quad \boldsymbol{B} \neq 0 \longrightarrow \boldsymbol{\nabla} \theta \neq 0, \quad \tan \theta=|\kappa| / \Delta
$$

- The effective magnetic field is non-zero when creating a gradient of $\kappa(\boldsymbol{x})$ or $\Delta(\boldsymbol{x})$
- Born-Oppenheimer approx. $(\Omega \gg)$: we project the dynamics onto a given $\left|\chi_{1}(\boldsymbol{x})\right\rangle$

$$
\begin{aligned}
& |\Psi(\boldsymbol{x}, t)\rangle=\sum_{j=1,2} \psi_{j}(\boldsymbol{x}, t)\left|\chi_{j}(\boldsymbol{r})\right\rangle \approx \psi_{1}(\boldsymbol{x}, t)\left|\chi_{1}(\boldsymbol{r})\right\rangle \\
& i \partial_{t} \psi_{1}(\boldsymbol{x}, t)=\left\{\frac{(\hat{\boldsymbol{p}}-\boldsymbol{A})^{2}}{2 M}+\ldots\right\} \psi_{1}(\boldsymbol{x}, t), \quad \boldsymbol{A}=i\left\langle\chi_{1} \mid \nabla \chi_{1}\right\rangle=\frac{1}{2}(\cos \theta-1) \boldsymbol{\nabla} \phi
\end{aligned}
$$

- The Berry connection \boldsymbol{A} gives rise to an effective magnetic field

$$
\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}=\frac{1}{2} \boldsymbol{\nabla}(\cos \theta) \times \boldsymbol{\nabla} \phi, \quad \boldsymbol{B} \neq 0 \longrightarrow \boldsymbol{\nabla} \theta \neq 0, \quad \tan \theta=|\kappa| / \Delta
$$

- The effective magnetic field is non-zero when creating a gradient of $\kappa(\boldsymbol{x})$ or $\Delta(\boldsymbol{x})$
- NIST \exp [Spielman et al.] : gradient of $\Delta(\boldsymbol{x})$ using a magnetic field gradient

- Born-Oppenheimer approx. $(\Omega \gg)$: we project the dynamics onto a given $\left|\chi_{1}(\boldsymbol{x})\right\rangle$

$$
\begin{aligned}
& |\Psi(\boldsymbol{x}, t)\rangle=\sum_{j=1,2} \psi_{j}(\boldsymbol{x}, t)\left|\chi_{j}(\boldsymbol{r})\right\rangle \approx \psi_{1}(\boldsymbol{x}, t)\left|\chi_{1}(\boldsymbol{r})\right\rangle \\
& i \partial_{t} \psi_{1}(\boldsymbol{x}, t)=\left\{\frac{(\hat{\boldsymbol{p}}-\boldsymbol{A})^{2}}{2 M}+\ldots\right\} \psi_{1}(\boldsymbol{x}, t), \quad \boldsymbol{A}=i\left\langle\chi_{1} \mid \nabla \chi_{1}\right\rangle=\frac{1}{2}(\cos \theta-1) \boldsymbol{\nabla} \phi
\end{aligned}
$$

- The Berry connection \boldsymbol{A} gives rise to an effective magnetic field

$$
\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A}=\frac{1}{2} \boldsymbol{\nabla}(\cos \theta) \times \boldsymbol{\nabla} \phi, \quad \boldsymbol{B} \neq 0 \longrightarrow \boldsymbol{\nabla} \theta \neq 0, \quad \tan \theta=|\kappa| / \Delta
$$

- The effective magnetic field is non-zero when creating a gradient of $\kappa(\boldsymbol{x})$ or $\Delta(\boldsymbol{x})$
- NIST exp [Spielman et al.] : gradient of $\Delta(\boldsymbol{x})$ using a magnetic field gradient

- More dressed states? One can create spin-orbit coupling $\boldsymbol{A}_{j k}=i\left\langle\chi_{j} \mid \nabla \chi_{k}\right\rangle \ldots$

Internal states in optical lattices: laser-induced tunneling

- Optical dipole potentials : $V_{\sigma}(\boldsymbol{x})=\alpha(\lambda ; \sigma)|\boldsymbol{E}(\boldsymbol{x})|^{2} \rightarrow$ state-dependent lattices !

- Optical dipole potentials : $V_{\sigma}(\boldsymbol{x})=\alpha(\lambda ; \sigma)|\boldsymbol{E}(\boldsymbol{x})|^{2} \rightarrow$ state-dependent lattices!

- Let us assume $\left|V_{g, e}\right| \gg E_{\mathrm{R}}$: no bare hopping $J_{x}^{g}, J_{x}^{e} \approx 0$
- Optical dipole potentials : $V_{\sigma}(\boldsymbol{x})=\alpha(\lambda ; \sigma)|\boldsymbol{E}(\boldsymbol{x})|^{2} \rightarrow$ state-dependent lattices!

- Let us assume $\left|V_{g, e}\right| \gg E_{\mathrm{R}}$: no bare hopping $J_{x}^{g}, J_{x}^{e} \approx 0$
- We couple the two internal states $|g\rangle$ and $|e\rangle$ using a resonant light $\omega_{\mathrm{L}}=\omega_{g e}$:

$$
\hat{U}_{\text {coupl }}=\frac{1}{2} \kappa(\boldsymbol{x})|e\rangle\langle g|+\text { h.c. }=\frac{1}{2} \Omega e^{i \boldsymbol{k} \cdot \boldsymbol{x}}|e\rangle\langle g|+\text { h.c. }, \quad \text { where we set } E(\boldsymbol{x})=e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

- Optical dipole potentials : $V_{\sigma}(\boldsymbol{x})=\alpha(\lambda ; \sigma)|\boldsymbol{E}(\boldsymbol{x})|^{2} \rightarrow$ state-dependent lattices!

- Let us assume $\left|V_{g, e}\right| \gg E_{\mathrm{R}}$: no bare hopping $J_{x}^{g}, J_{x}^{e} \approx 0$
- We couple the two internal states $|g\rangle$ and $|e\rangle$ using a resonant light $\omega_{\mathrm{L}}=\omega_{g e}$:
$\hat{U}_{\text {coupl }}=\frac{1}{2} \kappa(\boldsymbol{x})|e\rangle\langle g|+$ h.c. $=\frac{1}{2} \Omega e^{i \boldsymbol{k} \cdot \boldsymbol{x}}|e\rangle\langle g|+$ h.c.,\quad where we set $E(\boldsymbol{x})=e^{i \boldsymbol{k} \cdot \boldsymbol{x}}$

- Optical dipole potentials : $V_{\sigma}(\boldsymbol{x})=\alpha(\lambda ; \sigma)|\boldsymbol{E}(\boldsymbol{x})|^{2} \rightarrow$ state-dependent lattices!

- Let us assume $\left|V_{g, e}\right| \gg E_{\mathrm{R}}$: no bare hopping $J_{x}^{g}, J_{x}^{e} \approx 0$
- We couple the two internal states $|g\rangle$ and $|e\rangle$ using a resonant light $\omega_{\mathrm{L}}=\omega_{g e}$:
$\hat{U}_{\text {coupl }}=\frac{1}{2} \kappa(\boldsymbol{x})|e\rangle\langle g|+$ h.c. $=\frac{1}{2} \Omega e^{i \boldsymbol{k} \cdot \boldsymbol{x}}|e\rangle\langle g|+$ h.c.,\quad where we set $E(\boldsymbol{x})=e^{i \boldsymbol{k} \cdot \boldsymbol{x}}$

- Jaksch \& Zoller [NJP '03] : In the Wannier-states basis $\{|j ; g\rangle,|k ; e\rangle\}$

$$
J_{j \rightarrow k}^{\mathrm{eff}}=\langle j ; g| \hat{U}_{\text {coupl }}|k ; e\rangle=\frac{\Omega}{2} \int w_{g}\left(\boldsymbol{x}-\boldsymbol{x}_{j}\right) w_{e}\left(\boldsymbol{x}-\boldsymbol{x}_{k}\right) e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \mathrm{~d}^{2} x=J_{0}^{\text {eff }} e^{i \boldsymbol{k} \cdot \boldsymbol{x}_{j}}
$$

Hopping amplitude : $J_{0}^{\text {eff }}=\int w_{g}(\boldsymbol{x}-\boldsymbol{a}) w_{e}(\boldsymbol{x}) e^{i \boldsymbol{k} \cdot \boldsymbol{r}} \mathrm{~d}^{2} x, \quad \boldsymbol{a}=\boldsymbol{x}_{k}-\boldsymbol{x}_{j}$

- Let us add a state-independent lattice along y

- Let us add a state-independent lattice along y

- Setting $\boldsymbol{k}=k_{y} \boldsymbol{e}_{y} \rightarrow$ the Harper-Hofstadter model [Jaksch \& Zoller, NJP '03]

- Under the carpet here : the flux had to be rectified [see J-Z, Gerbier-Dalibard '10]
- The synthetic flux is given by $\alpha=k_{y} d_{y} / 2 \pi \sim 1$
- Let us add a state-independent lattice along y

- Setting $\boldsymbol{k}=k_{y} \boldsymbol{e}_{y} \rightarrow$ the Harper-Hofstadter model [Jaksch \& Zoller, NJP '03]

- Under the carpet here : the flux had to be rectified [see J-Z, Gerbier-Dalibard '10]
- The synthetic flux is given by $\alpha=k_{y} d_{y} / 2 \pi \sim 1$
- Reminder : $\alpha \sim 1 \leftrightarrow B \sim 10^{4} \mathrm{~T}$ in (cond-mat) systems with $d \sim 10^{-10} \mathrm{~m}$
- The same idea can be used to generate the Haldane model [Anisimovas PRA '14]
- J-Z scheme : state-dependent lattice along $x+$ laser coupling + lattice along y

- But why do we need the lattice along x after all?
- J-Z scheme : state-dependent lattice along $x+$ laser coupling + lattice along y

- But why do we need the lattice along x after all?
- Let us consider the atom-light coupling Hamiltonian only (no lattice) :

$$
\hat{U}_{\text {coupl }}=\frac{1}{2} \kappa(\boldsymbol{x})|e\rangle\langle g|+\text { h.c. }=\frac{1}{2} \Omega e^{i \boldsymbol{k} \cdot \boldsymbol{x}}|e\rangle\langle g|+\text { h.c. }, \quad \text { where we set } E(\boldsymbol{x})=e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

- J-Z scheme : state-dependent lattice along $x+$ laser coupling + lattice along y

- But why do we need the lattice along x after all?
- Let us consider the atom-light coupling Hamiltonian only (no lattice) :

$$
\hat{U}_{\text {coupl }}=\frac{1}{2} \kappa(\boldsymbol{x})|e\rangle\langle g|+\text { h.c. }=\frac{1}{2} \Omega e^{i \boldsymbol{k} \cdot \boldsymbol{x}}|e\rangle\langle g|+\text { h.c. }, \quad \text { where we set } E(\boldsymbol{x})=e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

- We can interpret it as a "hopping" term along the internal-state dimension

$$
\hat{U}_{\text {coupl }}=J_{\text {synth }} e^{i \boldsymbol{k} \cdot \boldsymbol{x}}|1\rangle\langle 2|+\text { h.c. }, \quad \text { with "hopping" amplitude }: J_{\text {synth }}=\Omega / 2
$$

- J-Z scheme : state-dependent lattice along $x+$ laser coupling + lattice along y

- But why do we need the lattice along x after all?
- Let us consider the atom-light coupling Hamiltonian only (no lattice) :

$$
\hat{U}_{\text {coupl }}=\frac{1}{2} \kappa(\boldsymbol{x})|e\rangle\langle g|+\text { h.c. }=\frac{1}{2} \Omega e^{i \boldsymbol{k} \cdot \boldsymbol{x}}|e\rangle\langle g|+\text { h.c. }, \quad \text { where we set } E(\boldsymbol{x})=e^{i \boldsymbol{k} \cdot \boldsymbol{x}}
$$

- We can interpret it as a "hopping" term along the internal-state dimension

$$
\hat{U}_{\text {coupl }}=J_{\text {synth }} e^{i \boldsymbol{k} \cdot \boldsymbol{x}}|1\rangle\langle 2|+\text { h.c. }, \quad \text { with "hopping" amplitude }: J_{\text {synth }}=\Omega / 2
$$

- Let us add a 1D (state-independent) optical lattice along y and set $\boldsymbol{k}=k_{y} \boldsymbol{e}_{y}$:

2D synthetic ladder
\longrightarrow with a synthetic magnetic flux

$$
\Phi=2 \pi \alpha=k_{y} d_{y}
$$

Synthetic dimensions：From 2D to 4D quantum Hall effects

- The full Harper-Hofstadter lattice with a synthetic dimension? More states?

- The full Harper-Hofstadter lattice with a synthetic dimension? More states?

- We have to extend our atom-light problem to $N>2$ internal states

$$
\begin{aligned}
& \hat{H}_{\text {atom }}=\frac{\hat{p}^{2}}{2 M}+\underbrace{\omega_{g}}_{=0}|g\rangle\langle g|+\sum_{j=1}^{N-1} \omega_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|, \\
& \hat{H}_{\text {dip }}=\hat{\boldsymbol{d}} \cdot \boldsymbol{E}(\boldsymbol{x}, t)+\text { h.c. }, \quad \hat{\boldsymbol{d}}: \text { dipole operator, } \quad \mathcal{E}(\boldsymbol{x}, t)=E(\boldsymbol{x}) \boldsymbol{\varepsilon} \exp \left(-i \omega_{\mathrm{L}} t\right)
\end{aligned}
$$

[Goldman, Juzeliunas, Ohberg, Spielman, Rep. Prog. Phys. '14]

- The full Harper-Hofstadter lattice with a synthetic dimension? More states?

- We have to extend our atom-light problem to $N>2$ internal states

$$
\begin{aligned}
& \hat{H}_{\text {atom }}=\frac{\hat{p}^{2}}{2 M}+\underbrace{\omega_{g}}_{=0}|g\rangle\langle g|+\sum_{j=1}^{N-1} \omega_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|, \\
& \hat{H}_{\text {dip }}=\hat{\boldsymbol{d}} \cdot \mathcal{E}(\boldsymbol{x}, t)+\text { h.c. }, \quad \hat{\boldsymbol{d}}: \text { dipole operator, } \quad \mathcal{E}(\boldsymbol{x}, t)=E(\boldsymbol{x}) \boldsymbol{\varepsilon} \exp \left(-i \omega_{\mathrm{L}} t\right)
\end{aligned}
$$

[Goldman, Juzeliunas, Ohberg, Spielman, Rep. Prog. Phys. '14]

- Consider Zeeman sublevels $\left|m_{F}\right\rangle$ in the GS manifold (total angular moment. F) Shifted by a real magnetic field : $\omega_{j+1}-\omega_{j}=\delta \omega_{0}=$ constant
- The full Harper-Hofstadter lattice with a synthetic dimension? More states?

- We have to extend our atom-light problem to $N>2$ internal states

$$
\begin{aligned}
& \hat{H}_{\text {atom }}=\frac{\hat{p}^{2}}{2 M}+\underbrace{\omega_{g}}_{=0}|g\rangle\langle g|+\sum_{j=1}^{N-1} \omega_{j}\left|e_{j}\right\rangle\left\langle e_{j}\right|, \\
& \hat{H}_{\text {dip }}=\hat{\boldsymbol{d}} \cdot \boldsymbol{E}(\boldsymbol{x}, t)+\text { h.c. }, \quad \hat{\boldsymbol{d}}: \text { dipole operator, } \quad \mathcal{E}(\boldsymbol{x}, t)=E(\boldsymbol{x}) \boldsymbol{\varepsilon} \exp \left(-i \omega_{\mathrm{L}} t\right)
\end{aligned}
$$

[Goldman, Juzeliunas, Ohberg, Spielman, Rep. Prog. Phys. '14]

- Consider Zeeman sublevels $\left|m_{F}\right\rangle$ in the GS manifold (total angular moment. F) Shifted by a real magnetic field : $\omega_{j+1}-\omega_{j}=\delta \omega_{0}=$ constant
- A Raman-coupling configuration, with $\omega_{1}-\omega_{2}=\delta \omega_{0}$ and $\boldsymbol{k}_{1}-\boldsymbol{k}_{2}=\boldsymbol{k}_{\mathrm{R}}$, gives

$$
\begin{aligned}
& \hat{H}_{\text {eff }}=\frac{\Omega_{\mathrm{R}}}{2}\left(\hat{F}_{+} e^{i \boldsymbol{k}_{\mathrm{R}} \cdot \boldsymbol{x}}+\hat{F}_{-} e^{-i \boldsymbol{k}_{\mathrm{R}} \cdot \boldsymbol{x}}\right), \quad \hat{F}_{ \pm}=\hat{F}_{x} \pm i \hat{F}_{y}: \text { ladder operators } \\
& \hat{F}_{+}\left|m_{F}\right\rangle=g_{F, m_{F}}\left|m_{F}+1\right\rangle, \quad g_{F, m_{F}}=\sqrt{F(F+1)-m_{F}\left(m_{F}+1\right)}
\end{aligned}
$$

- A Raman-coupling configuration gives

$$
\begin{aligned}
& \hat{H}_{\text {eff }}=\frac{\Omega_{\mathrm{R}}}{2}\left(\hat{F}_{+} e^{i \boldsymbol{k}_{\mathrm{R}} \cdot \boldsymbol{x}}+\hat{F}_{-} e^{-i \boldsymbol{k}_{\mathrm{R}} \cdot \boldsymbol{x}}\right), \quad \hat{F}_{ \pm}=\hat{F}_{x} \pm i \hat{F}_{y}: \text { ladder operators } \\
& \hat{F}_{+}\left|m_{F}\right\rangle=g_{F, m_{F}}\left|m_{F}+1\right\rangle, \quad g_{F, m_{F}}=\sqrt{F(F+1)-m_{F}\left(m_{F}+1\right)}
\end{aligned}
$$

- The synthetic 2D lattice is an anisotropic Hofstadter model [Celi et al. PRL '14]

- A Raman-coupling configuration gives

$$
\begin{aligned}
& \hat{H}_{\text {eff }}=\frac{\Omega_{\mathrm{R}}}{2}\left(\hat{F}_{+} e^{i \boldsymbol{k}_{\mathrm{R}} \cdot \boldsymbol{x}}+\hat{F}_{-} e^{-i \boldsymbol{k}_{\mathrm{R}} \cdot \boldsymbol{x}}\right), \quad \hat{F}_{ \pm}=\hat{F}_{x} \pm i \hat{F}_{y}: \text { ladder operators } \\
& \hat{F}_{+}\left|m_{F}\right\rangle=g_{F, m_{F}}\left|m_{F}+1\right\rangle, \quad g_{F, m_{F}}=\sqrt{F(F+1)-m_{F}\left(m_{F}+1\right)}
\end{aligned}
$$

- The synthetic 2D lattice is an anisotropic Hofstadter model [Celi et al. PRL '14]

- For $F=1: g_{F, m_{F}}=\sqrt{2} \rightarrow$ isotropic 3-leg ladder with uniform flux !
- A Raman-coupling configuration gives

$$
\begin{aligned}
& \hat{H}_{\text {eff }}=\frac{\Omega_{\mathrm{R}}}{2}\left(\hat{F}_{+} e^{i \boldsymbol{k}_{\mathrm{R}} \cdot \boldsymbol{x}}+\hat{F}_{-} e^{-i \boldsymbol{k}_{\mathrm{R}} \cdot \boldsymbol{x}}\right), \quad \hat{F}_{ \pm}=\hat{F}_{x} \pm i \hat{F}_{y}: \text { ladder operators } \\
& \hat{F}_{+}\left|m_{F}\right\rangle=g_{F, m_{F}}\left|m_{F}+1\right\rangle, \quad g_{F, m_{F}}=\sqrt{F(F+1)-m_{F}\left(m_{F}+1\right)}
\end{aligned}
$$

- The synthetic 2D lattice is an anisotropic Hofstadter model [Celi et al. PRL '14]

- For $F=1: g_{F, m_{F}}=\sqrt{2} \rightarrow$ isotropic 3-leg ladder with uniform flux !
- For $F=9 / 2$ (10-leg ladder) : the anisotropy does not destroy the gaps !

Synthetic lattice and topological edge states

(a) Super-ladder and color code

(b) Spectrum

See also D. Hügel and B. Paredes, arXiv :1306.1190 (2013).

Three internal states and the edge states
(a) $\Omega_{0}=0.14 t$

(b) $\Omega_{0}=0.5 t$

edge states

$$
m=+1
$$

$$
m=0
$$

$$
m=-1
$$

- Experimental results in 2015 ! arXiv :1502.02495 and arXiv :1502.02496

Observation of chiral edge states with neutral fermions in synthetic Hall ribbons

M. Mancini ${ }^{1}$, G. Pagano ${ }^{1}$, G. Cappellini ${ }^{2}$, L. Livi ${ }^{2}$, M. Rider ${ }^{5,6}$
J. Catani ${ }^{3,2}$, C. Sias ${ }^{3,2}$, P. Zoller ${ }^{5,6}$, M. Inguscio ${ }^{4,1,2}$, M. Dalmonte ${ }^{5,6}$, L. Fallani ${ }^{1,2}$
${ }^{1}$ Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
${ }^{2}$ LENS European Laboratory for Nonlinear Spectroscopy, 50019 Sesto Fiorentino, Italy
${ }^{3}$ INO-CNR Istituto Nazionale di Ottica del CNR, Sezione di Sesto Fiorentino, 50019 Sesto Fiorentino, Italy
${ }^{4}$ INRIM Istituto Nazionale di Ricerca Metrologica, 10135 Torino, Italy
${ }^{5}$ Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
${ }^{6}$ Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria

Visualizing edge states with an atomic Bose gas in the quantum Hall regime

B. K. Stuh1 ${ }^{1, *}$, H.--I Lu ${ }^{1, *}$, L. M. Aycock ${ }^{1,2}$, D. Genkina ${ }^{1}$, and I. B. Spielman ${ }^{1,{ }^{\dagger}}$
${ }^{1}$ Joint Quantum Institute
National Institute of Standards and Technology, and University of Maryland
Gaithersburg, Maryland, 20899, USA
${ }^{2}$ Cornell University
Ithaca, New York, 14850, USA

4D Physics with Cold Atoms

H．M．Price，O．Zilberberg，T．Ozawa，I．Carusotto，N．Goldman，arXiv：1505．04387

Beyond the Chern-number measurement...

- What if we combine the electric field E_{μ} with a perturbing magnetic field \boldsymbol{B} ?

$$
\begin{align*}
& \dot{r}^{\mu}(\boldsymbol{k})=\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}-\dot{k}_{\nu} \Omega^{\mu \nu}(\boldsymbol{k}) \tag{1}\\
& \dot{k}_{\mu}=-E_{\mu}-\dot{r}^{\nu} B_{\mu \nu} ; \quad B_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad \text { see Xian et al. RMP '10, Gao et al. arXiv: 1411.0324 }
\end{align*}
$$

Beyond the Chern-number measurement...

- What if we combine the electric field E_{μ} with a perturbing magnetic field \boldsymbol{B} ?

$$
\begin{align*}
& \dot{r}^{\mu}(\boldsymbol{k})=\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}-\dot{k}_{\nu} \Omega^{\mu \nu}(\boldsymbol{k}) \tag{1}\\
& \dot{k}_{\mu}=-E_{\mu}-\dot{r}^{\nu} B_{\mu \nu} ; \quad B_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad \text { see Xiao et al. RMP '10, Gao et al. arXiv :1411.0324 }
\end{align*}
$$

- Let us insert \dot{k}_{μ} into (1):

$$
\begin{aligned}
\dot{r}^{\mu}(\boldsymbol{k}) & =\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\dot{r}^{\gamma} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k}) \\
& =\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\left(\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}}+E_{\delta} \Omega^{\gamma \delta}(\boldsymbol{k})+\dot{r}^{\alpha} B_{\delta \alpha} \Omega^{\gamma \delta}(\boldsymbol{k})\right) B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k}) \\
& \approx \frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k})+\Omega^{\gamma \delta}(\boldsymbol{k}) \Omega^{\mu \nu}(\boldsymbol{k}) E_{\delta} B_{\nu \gamma}+\ldots
\end{aligned}
$$

\rightarrow Combining \boldsymbol{E} and \boldsymbol{B} produces a term $\sim \Omega^{2}$

Beyond the Chern-number measurement...

- What if we combine the electric field E_{μ} with a perturbing magnetic field \boldsymbol{B} ?

$$
\begin{align*}
& \dot{r}^{\mu}(\boldsymbol{k})=\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}-\dot{k}_{\nu} \Omega^{\mu \nu}(\boldsymbol{k}) \tag{1}\\
& \dot{k}_{\mu}=-E_{\mu}-\dot{r}^{\nu} B_{\mu \nu} ; \quad B_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad \text { see Xiao et al. RMP '10, Gao et al. arXiv :1411.0324 }
\end{align*}
$$

- Let us insert \dot{k}_{μ} into (1):

$$
\begin{aligned}
\dot{r}^{\mu}(\boldsymbol{k}) & =\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\dot{r}^{\gamma} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k}) \\
& =\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\left(\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}}+E_{\delta} \Omega^{\gamma \delta}(\boldsymbol{k})+\dot{r}^{\alpha} B_{\delta \alpha} \Omega^{\gamma \delta}(\boldsymbol{k})\right) B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k}) \\
& \approx \frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k})+\Omega^{\gamma \delta}(\boldsymbol{k}) \Omega^{\mu \nu}(\boldsymbol{k}) E_{\delta} B_{\nu \gamma}+\ldots
\end{aligned}
$$

\rightarrow Combining \boldsymbol{E} and \boldsymbol{B} produces a term $\sim \Omega^{2}$

- This raises two questions :
- What if we fill the band ? Is there (still) a quantized response?
- Is there a topological invariant $\int \Omega^{2}=\int \Omega \wedge \Omega$?

Some hints from mathematics... see the book by Nakahara

- The curvature is a two-form

$$
\Omega=\frac{1}{2} \Omega^{\mu \nu} \mathrm{d} k_{\mu} \wedge \mathrm{d} k_{\nu} \quad \neq 0 \text { for } \operatorname{dim}(\mathcal{M}) \geq 2
$$

- Taking the square produces a four-form

$$
\Omega^{2}=\Omega \wedge \Omega=\frac{1}{4} \Omega^{\mu \nu} \Omega^{\gamma \delta} \mathrm{d} k_{\mu} \wedge \mathrm{d} k_{\nu} \wedge \mathrm{d} k_{\gamma} \wedge \mathrm{d} k_{\delta} \quad \neq 0 \text { for } \operatorname{dim}(\mathcal{M}) \geq 4
$$

Some hints from mathematics... see the book by Nakahara

- The curvature is a two-form

$$
\Omega=\frac{1}{2} \Omega^{\mu \nu} \mathrm{d} k_{\mu} \wedge \mathrm{d} k_{\nu} \quad \neq 0 \text { for } \operatorname{dim}(\mathcal{M}) \geq 2
$$

- Taking the square produces a four-form

$$
\Omega^{2}=\Omega \wedge \Omega=\frac{1}{4} \Omega^{\mu \nu} \Omega^{\gamma \delta} \mathrm{d} k_{\mu} \wedge \mathrm{d} k_{\nu} \wedge \mathrm{d} k_{\gamma} \wedge \mathrm{d} k_{\delta} \quad \neq 0 \text { for } \operatorname{dim}(\mathcal{M}) \geq 4
$$

- Given a curvature Ω, one defines the Chern character

$$
\operatorname{ch}(\Omega)=\sum_{j=1} \frac{1}{j!} \operatorname{Tr}\left(\frac{\Omega}{2 \pi}\right)^{j}=\frac{1}{2 \pi} \operatorname{Tr} \Omega+\frac{1}{8 \pi^{2}} \operatorname{Tr} \Omega^{2}+\ldots
$$

- In 2D : ch $(\Omega)=\frac{1}{2 \pi} \operatorname{Tr} \Omega$
\longrightarrow the first Chern number : $\nu_{1}=\frac{1}{2 \pi} \int_{\mathcal{M}} \operatorname{Tr} \Omega$

Some hints from mathematics... see the book by Nakahara

- The curvature is a two-form

$$
\Omega=\frac{1}{2} \Omega^{\mu \nu} \mathrm{d} k_{\mu} \wedge \mathrm{d} k_{\nu} \quad \neq 0 \text { for } \operatorname{dim}(\mathcal{M}) \geq 2
$$

- Taking the square produces a four-form

$$
\Omega^{2}=\Omega \wedge \Omega=\frac{1}{4} \Omega^{\mu \nu} \Omega^{\gamma \delta} \mathrm{d} k_{\mu} \wedge \mathrm{d} k_{\nu} \wedge \mathrm{d} k_{\gamma} \wedge \mathrm{d} k_{\delta} \quad \neq 0 \text { for } \operatorname{dim}(\mathcal{M}) \geq 4
$$

- Given a curvature Ω, one defines the Chern character

$$
\operatorname{ch}(\Omega)=\sum_{j=1} \frac{1}{j!} \operatorname{Tr}\left(\frac{\Omega}{2 \pi}\right)^{j}=\frac{1}{2 \pi} \operatorname{Tr} \Omega+\frac{1}{8 \pi^{2}} \operatorname{Tr} \Omega^{2}+\ldots
$$

- In 2D : $\operatorname{ch}(\Omega)=\frac{1}{2 \pi} \operatorname{Tr} \Omega$
\longrightarrow the first Chern number: $\nu_{1}=\frac{1}{2 \pi} \int_{\mathcal{M}} \operatorname{Tr} \Omega$
- In 4D $: \operatorname{ch}(\Omega)=\frac{1}{2 \pi} \operatorname{Tr} \Omega+\frac{1}{8 \pi^{2}} \operatorname{Tr} \Omega^{2}$
\longrightarrow the second Chern number : $\nu_{2}=\frac{1}{8 \pi^{2}} \int_{\mathcal{M}} \operatorname{Tr} \Omega^{2}$
- The second Chern number is associated with the 4D quantum Hall effect see Zhang and Hu Science 2001 and Avron et al. PRL 1988 about 4D systems with TRS

Back to the semi-classical equations

- We had the following equations of motion (valid for $d=\operatorname{dim} \mathcal{M} \geq 1$)

$$
\dot{r}^{\mu}(\boldsymbol{k})=\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k})+\Omega^{\gamma \delta}(\boldsymbol{k}) \Omega^{\mu \nu}(\boldsymbol{k}) E_{\delta} B_{\nu \gamma}
$$

Back to the semi-classical equations

- We had the following equations of motion (valid for $d=\operatorname{dim} \mathcal{M} \geq 1$)

$$
\dot{r}^{\mu}(\boldsymbol{k})=\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k})+\Omega^{\gamma \delta}(\boldsymbol{k}) \Omega^{\mu \nu}(\boldsymbol{k}) E_{\delta} B_{\nu \gamma}
$$

- Let us fill the band : $v_{\text {tot }}^{\mu}=\sum_{\boldsymbol{k}} \dot{r}^{\mu}(\boldsymbol{k})$

Back to the semi-classical equations

- We had the following equations of motion (valid for $d=\operatorname{dim} \mathcal{M} \geq 1$)

$$
\dot{r}^{\mu}(\boldsymbol{k})=\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k})+\Omega^{\gamma \delta}(\boldsymbol{k}) \Omega^{\mu \nu}(\boldsymbol{k}) E_{\delta} B_{\nu \gamma}
$$

- Let us fill the band : $v_{\text {tot }}^{\mu}=\sum_{\boldsymbol{k}} \dot{r}^{\mu}(\boldsymbol{k})$
- Care is required in the presence of a magnetic field [see Xiao et al. PRL '05, Bliokh PLA '06]

$$
\sum_{k} \nrightarrow \frac{V}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \mathrm{~d}^{d} k \quad \text { but } \quad \sum_{k} \longrightarrow \frac{V}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}}\left(1+\frac{1}{2} B_{\mu \nu} \Omega^{\mu \nu}\right) \mathrm{d}^{d} k \quad \text { for } d=2,3
$$

Back to the semi-classical equations

- We had the following equations of motion (valid for $d=\operatorname{dim} \mathcal{M} \geq 1$)

$$
\dot{r}^{\mu}(\boldsymbol{k})=\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k})+\Omega^{\gamma \delta}(\boldsymbol{k}) \Omega^{\mu \nu}(\boldsymbol{k}) E_{\delta} B_{\nu \gamma}
$$

- Let us fill the band : $v_{\text {tot }}^{\mu}=\sum_{\boldsymbol{k}} \dot{r}^{\mu}(\boldsymbol{k})$
- Care is required in the presence of a magnetic field [see Xiao et al. PRL '05, Bliokh PLA '06]

$$
\sum_{k} \nrightarrow \frac{V}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \mathrm{~d}^{d} k \quad \text { but } \quad \sum_{k} \longrightarrow \frac{V}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}}\left(1+\frac{1}{2} B_{\mu \nu} \Omega^{\mu \nu}\right) \mathrm{d}^{d} k \quad \text { for } d=2,3
$$

- For the 4D case, we found the following generalization :

$$
\sum_{\boldsymbol{k}} \longrightarrow \frac{V}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}}\left[1+\frac{1}{2} B_{\mu \nu} \Omega^{\mu \nu}+\frac{1}{64}\left(\varepsilon^{\alpha \beta \gamma \delta} B_{\alpha \beta} B_{\gamma \delta}\right)\left(\varepsilon_{\mu \nu \lambda \rho} \Omega^{\mu \nu} \Omega^{\lambda \rho}\right)\right] \mathrm{d}^{4} k
$$

Back to the semi-classical equations

- We had the following equations of motion (valid for $d=\operatorname{dim} \mathcal{M} \geq 1$)

$$
\dot{r}^{\mu}(\boldsymbol{k})=\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\mu}}+E_{\nu} \Omega^{\mu \nu}(\boldsymbol{k})+\frac{\partial \mathcal{E}(\boldsymbol{k})}{\partial k_{\gamma}} B_{\nu \gamma} \Omega^{\mu \nu}(\boldsymbol{k})+\Omega^{\gamma \delta}(\boldsymbol{k}) \Omega^{\mu \nu}(\boldsymbol{k}) E_{\delta} B_{\nu \gamma}
$$

- Let us fill the band : $v_{\text {tot }}^{\mu}=\sum_{\boldsymbol{k}} \dot{r}^{\mu}(\boldsymbol{k})$
- Care is required in the presence of a magnetic field [see Xiao et al. PRL' ${ }^{\prime} 05$, Bliokh PLA '06]

$$
\sum_{k} \nrightarrow \frac{V}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \mathrm{~d}^{d} k \quad \text { but } \quad \sum_{\boldsymbol{k}} \longrightarrow \frac{V}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}}\left(1+\frac{1}{2} B_{\mu \nu} \Omega^{\mu \nu}\right) \mathrm{d}^{d} k \quad \text { for } d=2,3
$$

- For the 4D case, we found the following generalization :

$$
\sum_{\boldsymbol{k}} \longrightarrow \frac{V}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}}\left[1+\frac{1}{2} B_{\mu \nu} \Omega^{\mu \nu}+\frac{1}{64}\left(\varepsilon^{\alpha \beta \gamma \delta} B_{\alpha \beta} B_{\gamma \delta}\right)\left(\varepsilon_{\mu \nu \lambda \rho} \Omega^{\mu \nu} \Omega^{\lambda \rho}\right)\right] \mathrm{d}^{4} k
$$

- The total current density $j^{\mu}=\sum_{\boldsymbol{k}} \dot{r}^{\mu}(\boldsymbol{k}) / V$ is given by

$$
\begin{aligned}
j^{\mu} & =E_{\nu} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{\mu \nu} \mathrm{d}^{4} k+\frac{\nu_{2}}{4 \pi^{2}} \varepsilon^{\mu \alpha \beta \nu} E_{\nu} B_{\alpha \beta} \quad(\mu=x, y, z, w) \\
\text { where } \nu_{2} & =\frac{1}{8 \pi^{2}} \int_{\mathbb{T}^{4}} \Omega^{2}=\frac{1}{4 \pi^{2}} \int_{\mathbb{T}^{4}} \Omega^{x y} \Omega^{z w}+\Omega^{w x} \Omega^{y z}+\Omega^{z x} \Omega^{y w} \mathrm{~d}^{4} k
\end{aligned}
$$

In agreement with the topological-field-theory of Qi, Hughes, Zhang PRB '08 for 4D TRS systems

Introducing a 4D framework

- We want to investigate the transport equation

$$
\begin{aligned}
j^{\mu} & =E_{\nu} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{\mu \nu} \mathrm{d}^{4} k+\frac{\nu_{2}}{4 \pi^{2}} \varepsilon^{\mu \alpha \beta \nu} E_{\nu} B_{\alpha \beta} \\
\nu_{2} & =\frac{1}{4 \pi^{2}} \int_{\mathbb{T}^{4}} \Omega^{x y} \Omega^{z w}+\Omega^{w x} \Omega^{y z}+\Omega^{z x} \Omega^{y w} \mathrm{~d}^{4} k
\end{aligned}
$$

- In order to have $\nu_{2} \neq 0$, we look for a minimal 4D system with $\Omega^{z x}, \Omega^{y w} \neq 0$
\longrightarrow fluxes $\Phi_{1,2}$ in the $x-z$ and $y-w$ planes : two Hofstadter models.

Introducing a 4D framework

- We want to investigate the transport equation

$$
\begin{aligned}
j^{\mu} & =E_{\nu} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{\mu \nu} \mathrm{d}^{4} k+\frac{\nu_{2}}{4 \pi^{2}} \varepsilon^{\mu \alpha \beta \nu} E_{\nu} B_{\alpha \beta} \\
\nu_{2} & =\frac{1}{4 \pi^{2}} \int_{\mathbb{T}^{4}} \Omega^{x y} \Omega^{z w}+\Omega^{w x} \Omega^{y z}+\Omega^{z x} \Omega^{y w} \mathrm{~d}^{4} k
\end{aligned}
$$

- In order to have $\nu_{2} \neq 0$, we look for a minimal 4D system with $\Omega^{z x}, \Omega^{y w} \neq 0$
\longrightarrow fluxes $\Phi_{1,2}$ in the $x-z$ and $y-w$ planes : two Hofstadter models.

Introducing a 4D framework

- We want to investigate the transport equation

$$
\begin{aligned}
j^{\mu} & =E_{\nu} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{\mu \nu} \mathrm{d}^{4} k+\frac{\nu_{2}}{4 \pi^{2}} \varepsilon^{\mu \alpha \beta \nu} E_{\nu} B_{\alpha \beta} \\
\nu_{2} & =\frac{1}{4 \pi^{2}} \int_{\mathbb{T}^{4}} \Omega^{x y} \Omega^{z w}+\Omega^{w x} \Omega^{y z}+\Omega^{z x} \Omega^{y w} \mathrm{~d}^{4} k
\end{aligned}
$$

- In order to have $\nu_{2} \neq 0$, we look for a minimal 4D system with $\Omega^{z x}, \Omega^{y w} \neq 0$
\longrightarrow fluxes $\Phi_{1,2}$ in the $x-z$ and $y-w$ planes : two Hofstadter models.

- Physical realization with cold atoms in a 3D optical lattice : Easy !
- A superlattice along $z+$ resonant $x-z$-dependent time-modulation
- Raman transitions between internal states with recoil momentum along y

- The energy spectrum displays a low-energy topological band [see Kraus et al. PRL '13]

The transport equations

- Let us come back to our transport equation, with $\Omega^{z x}, \Omega^{y w} \neq 0$

$$
j^{\mu}=E_{\nu} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{\mu \nu} \mathrm{d}^{4} k+\frac{\nu_{2}}{4 \pi^{2}} \varepsilon^{\mu \alpha \beta \nu} E_{\nu} B_{\alpha \beta}, \quad \nu_{2}=\frac{1}{4 \pi^{2}} \int_{\mathbb{T}^{4}} \Omega^{z x} \Omega^{y w} \mathrm{~d}^{4} k
$$

The transport equations

- Let us come back to our transport equation, with $\Omega^{z x}, \Omega^{y w} \neq 0$

$$
j^{\mu}=E_{\nu} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{\mu \nu} \mathrm{d}^{4} k+\frac{\nu_{2}}{4 \pi^{2}} \varepsilon^{\mu \alpha \beta \nu} E_{\nu} B_{\alpha \beta}, \quad \nu_{2}=\frac{1}{4 \pi^{2}} \int_{\mathbb{T}^{4}} \Omega^{z x} \Omega^{y w} \mathrm{~d}^{4} k
$$

- We now choose an electric field $\boldsymbol{E}=E_{y} \mathbf{1}_{y}$ and a magnetic field $B_{\alpha \beta}=B_{z w}$

- The transport equations yield two non-trivial contributions :

$$
\begin{aligned}
& j^{w}=E_{y} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{w y} \mathrm{~d}^{4} k: \text { linear response along } w(\sim 2 \mathrm{D} \text { QH effect }) \\
& j^{x}=\frac{\nu_{2}}{4 \pi^{2}} E_{y} B_{z w}: \text { non-linear response along } x(\sim 4 \mathrm{D} \text { QH effect })
\end{aligned}
$$

The transport equations

- The transport equations yield two non-trivial contributions :

$$
\begin{aligned}
j^{w} & =E_{y} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{w y} \mathrm{~d}^{4} k: \text { linear response along } w(\sim 2 \mathrm{D} \text { QH effect }) \\
j^{x} & =\frac{\nu_{2}}{4 \pi^{2}} E_{y} B_{z w}: \text { non-linear response along } x(\sim 4 \mathrm{D} \text { QH effect })
\end{aligned}
$$

The transport equations

- The transport equations yield two non-trivial contributions :

$$
\begin{aligned}
& j^{w}=E_{y} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{w y} \mathrm{~d}^{4} k: \text { linear response along } w(\sim 2 \mathrm{D} \text { QH effect }) \\
& j^{x}=\frac{\nu_{2}}{4 \pi^{2}} E_{y} B_{z w}: \text { non-linear response along } x(\sim 4 \mathrm{D} \text { QH effect })
\end{aligned}
$$

- The linear-response actually leads to a "fractional" quantum Hall effect :

$$
\begin{aligned}
j^{w} & =E_{y} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{w y} \mathrm{~d}^{4} k=\frac{E_{y}}{2 \pi}\left(\frac{1}{2 \pi} \int_{\mathbb{T}^{2}} \Omega^{w y} \mathrm{~d} k_{w} \mathrm{~d} k_{y}\right) \frac{1}{(2 \pi)^{2}}\left(\int_{\mathbb{T}^{2}} \mathrm{~d} k_{x} \mathrm{~d} k_{z}\right) \\
& =\frac{E_{y}}{2 \pi} \nu_{1}^{w y} \times \frac{1}{q} \quad \text { for a flux } \Phi_{1}=\Phi_{x z}=p / q . \\
\longrightarrow & \sigma_{\mathrm{H}}=j^{w} / E_{y}=\left(\frac{e^{2}}{h}\right) \frac{\nu_{1}^{w y}}{q}: \text { "fractional" Hall conductivity in the } y-w \text { plane }
\end{aligned}
$$

The transport equations

- The transport equations yield two non-trivial contributions :

$$
\begin{aligned}
j^{w} & =E_{y} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{w y} \mathrm{~d}^{4} k: \text { linear response along } w(\sim 2 \mathrm{D} \text { QH effect }) \\
j^{x} & =\frac{\nu_{2}}{4 \pi^{2}} E_{y} B_{z w}: \text { non-linear response along } x(\sim 4 \mathrm{D} \text { QH effect })
\end{aligned}
$$

- The linear-response actually leads to a "fractional" quantum Hall effect :

$$
\begin{aligned}
j^{w} & =E_{y} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{w y} \mathrm{~d}^{4} k=\frac{E_{y}}{2 \pi}\left(\frac{1}{2 \pi} \int_{\mathbb{T}^{2}} \Omega^{w y} \mathrm{~d} k_{w} \mathrm{~d} k_{y}\right) \frac{1}{(2 \pi)^{2}}\left(\int_{\mathbb{T}^{2}} \mathrm{~d} k_{x} \mathrm{~d} k_{z}\right) \\
& =\frac{E_{y}}{2 \pi} \nu_{1}^{w y} \times \frac{1}{q} \quad \text { for a flux } \Phi_{1}=\Phi_{x z}=p / q . \\
\longrightarrow & \sigma_{\mathrm{H}}=j^{w} / E_{y}=\left(\frac{e^{2}}{h}\right) \frac{\nu_{1}^{w y}}{q}: \text { "fractional" Hall conductivity in the } y-w \text { plane }
\end{aligned}
$$

- Similar to the half-integer QH effect in 3D topological insulators [Xu et al. Nat. Phys. '14]

The transport equations

- The transport equations yield two non-trivial contributions :

$$
\begin{aligned}
& j^{w}=E_{y} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{w y} \mathrm{~d}^{4} k: \text { linear response along } w(\sim 2 \mathrm{D} \text { QH effect }) \\
& j^{x}=\frac{\nu_{2}}{4 \pi^{2}} E_{y} B_{z w}: \text { non-linear response along } x(\sim 4 \mathrm{D} \text { QH effect })
\end{aligned}
$$

- The linear-response actually leads to a "fractional" quantum Hall effect :

$$
\begin{aligned}
j^{w} & =E_{y} \frac{1}{(2 \pi)^{4}} \int_{\mathbb{T}^{4}} \Omega^{w y} \mathrm{~d}^{4} k=\frac{E_{y}}{2 \pi}\left(\frac{1}{2 \pi} \int_{\mathbb{T}^{2}} \Omega^{w y} \mathrm{~d} k_{w} \mathrm{~d} k_{y}\right) \frac{1}{(2 \pi)^{2}}\left(\int_{\mathbb{T}^{2}} \mathrm{~d} k_{x} \mathrm{~d} k_{z}\right) \\
& =\frac{E_{y}}{2 \pi} \nu_{1}^{w y} \times \frac{1}{q} \quad \text { for a flux } \Phi_{1}=\Phi_{x z}=p / q . \\
\longrightarrow & \sigma_{\mathrm{H}}=j^{w} / E_{y}=\left(\frac{e^{2}}{h}\right) \frac{\nu_{1}^{w y}}{q}: \text { "fractional" Hall conductivity in the } y-w \text { plane }
\end{aligned}
$$

- Similar to the half-integer QH effect in 3D topological insulators [Xu et al. Nat. Phys. '14]
- Could we test all these predictions ?

Numerical simulations : the current density

- The transport equations yield two non-trivial contributions for E_{y} and $B_{z w}$:

$$
\begin{aligned}
& j^{w}=\frac{E_{y}}{2 \pi} \nu_{1}^{w y} \times \frac{1}{q} \quad \text { for a flux } \Phi_{1}=\Phi_{x z}=p / q \\
& j^{x}=\frac{\nu_{2}}{4 \pi^{2}} E_{y} B_{z w}: \text { non-linear response along } x(\sim 4 \mathrm{D} \text { QH effect })
\end{aligned}
$$

- We have calculated the current densities for $E_{y}=-0.2 J / a$ and $B_{z w} / 2 \pi=-1 / 10$

- From these simulations : $\nu_{2} \approx-1.07$ and $\nu_{1}^{w y} \approx-1.03$

The center-of-mass drift : Numerical simulations

- The predicted center-of-mass drift along x (2nd-Chern-number response) :

$$
\begin{aligned}
v_{\mathrm{c} . \mathrm{m} .}^{x} & =j^{x} A_{\text {cell }}=j^{x}(4 a \times 4 a \times a \times a), \quad \text { for } \Phi_{1}=\Phi_{2}=1 / 4 \\
& =\left(\frac{\nu_{2}}{4 \pi^{2}} E_{y} \times B_{z w}\right) \times 16 a^{4} \approx 2 a / T_{B}, \quad T_{B}=2 \pi / a E_{y} \approx 50 \mathrm{~ms}
\end{aligned}
$$

The center-of-mass drift : Numerical simulations

- The predicted center-of-mass drift along x (2nd-Chern-number response) :

$$
\begin{aligned}
v_{\mathrm{c.m} .}^{x} & =j^{x} A_{\text {cell }}=j^{x}(4 a \times 4 a \times a \times a), \quad \text { for } \Phi_{1}=\Phi_{2}=1 / 4 \\
& =\left(\frac{\nu_{2}}{4 \pi^{2}} E_{y} \times B_{z w}\right) \times 16 a^{4} \approx 2 a / T_{B}, \quad T_{B}=2 \pi / a E_{y} \approx 50 \mathrm{~ms}
\end{aligned}
$$

- We have calculated the COM trajectory for $E_{y}=0.2 J / a$ and $B_{z w} / 2 \pi=-1 / 10$

- From these simulations : $\nu_{2} \approx-0.98$

The 4D responses are of the same order as the effects reported in Aidelsburger et al '15!

Some brief acknowledgements

- Munich team: M. Aidelsburger M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, and I. Bloch

- Collège de France: J. Dalibard, S. Nascimbene, F. Gerbier • Cambridge: N. R. Cooper • NIST: I.B. Spielman

- M. Aidelsburger M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbene, N. R. Cooper, I. Bloch and N. Goldman, Nature Physics 11, 162-166 (2015)
- N. Goldman and J. Dalibard, PRX 4, 031027 (2014)
- N. Goldman, J. Dalibard, M. Aidelsburger, N. R. Cooper, PRA 91, 033632 (2015)
- N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman, PNAS 101, 1 (2013)
- N. Goldman, G. Juzeliunas, P. Ohberg, I. B. Spielman Rep. Prog. Phys. 77126401 (2014)
- S. Nascimbene, N. Goldman, N. R. Cooper, J. Dalibard to appear in PRL (2015)

The 4D team

- Hannah M. Price, Tomoki Ozawa and Iacopo Carusotto, BEC Center (Trento)
- Oded Zilberberg, ETH (Zurich)

Hannah

Tomoki

lacopo

- H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, N. Goldman, arXiv:1505.04387

