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Part 2: Seeing topology in the lab!
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: Peierls phase-factors

Designing topological models by shaking atoms

The basic concept:

Munich/MIT: The Harper-Hofstadter model

ETH Zurich: The Haldane model

: uniform flux per plaquette 
  (in units of flux quantum)

mimic the A-B effect



Loading atoms into topological bands



• Starting from a 2D optical square lattice : E(k) = −2J [cos(kxd) + cos(kyd)]

driving

???

• The Munich trick [Aidelsburger et al. Nature Phys. ’15] : Nb of bands preserved !
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Anomalous velocity
and Chern-number measurements 



The Berry curvature in a lattice system
Consider a particle moving on a two-dimensional lattice:

Topology of the    th Bloch band: : Chern number of the band

The eigenfunctions are Bloch waves

The eigenenergies are Bloch bands

The Berry curvature of the    th band: 



Bloch Oscillations and the Anomalous (Berry) Velocity 

The semi-classical equations of motion for a wave packet centered around and in a Bloch band

Bloch oscillations

Consider a particle moving on a 1D lattice and subjected to a constant force



Bloch Oscillations and the Anomalous (Berry) Velocity 

The semi-classical equations of motion for a wave packet centered around and in a Bloch band

Bloch oscillations

Consider a particle moving on a 1D lattice and subjected to a constant force

Consider a particle moving on a 2D lattice and subjected to a constant force

The averaged velocity in a state is given by:

: anomalous (Berry) velocity

Isolate the Berry velocity?

Ref: Karplus & Luttinger 1954

Populate all the states in nth band:



Isolating the Berry velocity: Uniformly populating a single band 
Filled band of fermions Thermal gas
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Let us compute the transverse velocity: where



Isolating the Berry velocity: Uniformly populating a single band 
Filled band of fermions

Filled bands of fermions:

Thermal gas

Let us compute the transverse velocity: where

Link with the electrical Hall conductivity: where and

integer quantum Hall effect
von Klitzing 1980



The Thermal Bose Gas and the Center-of-Mass Drift 
Thermal Bose gas

The filling factor:

The Hall conductivity: where



The Thermal Bose Gas and the Center-of-Mass Drift 
Thermal Bose gas

The transverse velocity:

The filling factor:

The Hall conductivity: where



The Thermal Bose Gas and the Center-of-Mass Drift 
Thermal Bose gas

The transverse velocity:

The filling factor:

The center-of-mass transverse velocity:

The center-of-mass drift:

In-situ imaging can reveal the Chern number

Measure the Chern number with ultracold bosons

The Hall conductivity: where

see A. Dauphin & NG PRL 2013



The bosons are loaded into the lowest band

Experimental data:
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The optical gradient is added and the transverse drift is imaged in-situ

The Chern-number experiment in Munich

Ref: Aidelsburger, Lohse, Schweizer, Atala, Barreiro, Nascimbene, Cooper, Bloch, Goldman,  Nature Phys. 11, 162 (2015)



The Chern-number experiment in Munich
The bosons are loaded into the lowest band

Experimental data:
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Analyzing the data
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Short-time analysis: taking into account real initial band populations (about 60% in lowest band)

where

+  band-mapping data

Ref: Aidelsburger, Lohse, Schweizer, Atala, Barreiro, Nascimbene, Cooper, Bloch, Goldman,  Nature Phys. 11, 162 (2015)
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Long-time analysis: taking into account band repopulation

where

+ band-mapping data

200150100500
Bloch oscillation time (ms)

Po
pu

lat
ion

s η
μ(t

)

0

0.5
0

0.25

0.25

0.5

0.75
Fil

lin
g 

fa
ct

or
 γ(

t)

where

Ref: Aidelsburger, Lohse, Schweizer, Atala, Barreiro, Nascimbene, Cooper, Bloch, Goldman,  Nature Phys. 11, 162 (2015)



Seeing topological edge states with atoms



Bulk-Edge Correspondence in the Quantum Hall effect

Edge-state analysisBulk analysis

EE

Edge-states

EF

chiral edge modes

on a single edge

EFFEE

• Bulk-edge : the number of edge modes ν is topologically protected

ν = Nchern σH =
e2

h
ν

• Edge modes are 1D Dirac fermions : E(ky) ≈ vky

• The edge states chirality (orientation of propagation) : sign(∂E/∂ky) = sign(ν)
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Cold atoms in optical lattices:
emulating a QH insulator

Goal: Isolating and seeing 
the topological edge states

edge states

A quantum Hall device with cold atoms: what’s on the edge?

How to recognize the edge states?

They are chiral (“all go in the same direction”)
They are localized on the edge of the cloud
Their dispersion relation is linear:

Main difficulty: many bulk states compared to only a very few edge states

Typically in a cloud: N=10.000 particles and about 10-100 edge states

How to isolate the signal stemming from the edge states?



s 2

angular momentum

Spectroscopy and atomic state manipulation

Excite particles in the vicinity of the Fermi
energy, i.e., in a topological bulk gap

energy
bulk band

edge states

bulk band
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Edge-state signal on a dark background (without bulk)
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N.G., J. Beugnon and F. Gerbier
PRL 2012



Probing the edge states after a quench : the bat geometry

square optical lattice

external confinement

+ synthetic uniform 
   magnetic flux

ultracold
fermions

a

repulsive walls
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empty

empty

bulk

edge states

Equilibrium at t=0 (with walls) After walls removalb

NG, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman, PNAS 110, 6736 (2013)



Dispersive vs dispersionless systemssquare optical lattice

external confinement
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Dynamics for the topological flat band regime
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The effects of smooth confinements : V (r) ∼ (r/r0)γ
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Squeezing the cloud against the edge
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Dynamics for the dispersive system
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The opposite flux method for dispersive systems
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The edge-filter method for dispersive systems
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Some topics not discussed here
• Skyrmion-patterns in time-of-flight (Alba et al. PRL ’11, Goldman et al. NJP ’13)

H(k) = ε(k)1̂2×2 + d(k) · σ̂ : two-band systems (e.g. Haldane model)
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• Observation of chiral currents in optical ladders [see Part 3 and I. Bloch’s lecture]

• Zak phase measurement [see I. Bloch’s lecture]

• Berry curvature measurement through interferometry [see I. Bloch’s lecture]

• Thouless pump realization [see I. Bloch’s lecture]

• Proposal to probe Majorana edge modes in atomic wires [Kraus et al. NJP ’12,
Nascimbene JPB ’13]
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