Creating and Probing Topological Matter with Cold Atoms: From Shaken Lattices to Synthetic Dimensions

Nathan Goldman

2015 Arnold Sommerfeld School, August-September 2015

General introduction:
 From "real" materials to cold atoms

Quantum Simulation with cold atoms：From real materials to optical lattices

Real materials

Some examples：
－Superconductors
－Graphene
－Topological insulators
－Weyl semimetals

Theoretical models

$$
\hat{H}_{\mathrm{model}}=-J \sum_{\text {link }} \hat{a}_{j}^{\dagger} \hat{a}_{j+1}
$$

$$
+U \sum_{\text {sites }} \hat{a}_{j}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{j} \hat{a}_{j}
$$

＋ingredients ．．．

Cold atoms in optical lattices

－$\hat{H}_{\text {model }}=\hat{H}_{\text {atom }}$
－Control lattice geometry through light－field intensity
$V(\boldsymbol{r})=\frac{1}{2} \alpha(\lambda)|\boldsymbol{E}(\boldsymbol{r})|^{2}:$ optical dipole potential
－Control over microscopic parameters：U, J, \ldots
－Clean：no impurity，no phonons，．．．
－Load Fermi gases，or Bose gases，or mixtures．．．

Quantum Simulation with cold atoms: From real materials to optical lattices

Real materials

Some examples:

- Superconductors
- Graphene
- Topological insulators
- Weyl semimetals

Theoretical models

$$
\hat{H}_{\text {model }}=-J \sum_{\text {link }} \hat{a}_{j}^{\dagger} \hat{a}_{j+1}
$$

$$
+U \sum_{\text {sites }} \hat{a}_{j}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{j} \hat{a}_{j}
$$

+ ingredients

Cold atoms in optical lattices

- $\hat{H}_{\text {model }}=\hat{H}_{\text {atom }}$
- Control lattice geometry through light-field intensity
$V(\boldsymbol{r})=\frac{1}{2} \alpha(\lambda)|\boldsymbol{E}(\boldsymbol{r})|^{2}$: optical dipole potential
- Control over microscopic parameters: U, J, \ldots
- Clean: no impurity, no phonons,...
- Load Fermi gases, or Bose gases, or mixtures...

A few goals and challenges...

- Identify cold-atom setups that simulate systems of interest (real materials, but also high-energy physics?)
- Detect the effects using available probes (imaging techniques, single-site addressing, spectroscopy,...)
- Go beyond solid-state physics: "observe things that can't be created or seen in solids", identify new effects, ...

Our main interest in these lectures: topological states of matter

- The quantum Hall effect

- 2D topological insulators (quantum spin Hall effect)

$$
\begin{gathered}
\text { strong } \\
\text { spin-orbit coupling! } \\
\hat{H}_{\mathrm{SO}}=\sum_{\mu, \nu} \alpha_{\mu, \nu} k_{\mu} \hat{\sigma}_{\nu}
\end{gathered}
$$

- 3D topological insulators (Dirac-fermion surface states, axion electrodyn.)

Xia et al. Nat. Phys. 2009

- Topological superconducting wires (Majorana fermions at the edges)

$$
\hat{\gamma}=\hat{\gamma}^{\dagger}<\hat{\psi}_{\text {edge }}^{\hat{\gamma}_{1}}=\left(\hat{\gamma}_{1}+i \hat{\gamma}_{L}\right) / 2
$$

spin-orbit coupling
$+s$-wave supercond.

Synthetic gauge potentials: a route towards topological atomic states

Electrons in a solid	Neutral atoms in optical lattices
$\hat{H}=\sum_{j} \frac{1}{2 m}\left(\boldsymbol{p}_{j}-q A\left(\boldsymbol{x}_{j}\right)\right)^{2}+V\left(\boldsymbol{x}_{j}\right)+\ldots$	
atom-light coupling	
(or rotation/shaking)	
A : the electron charge	

Ex: Magnetic field $\boldsymbol{B}=\boldsymbol{\nabla} \times \boldsymbol{A} \quad \longrightarrow$ synthetic magnetic field for neutral atoms
Spin-orbit coupling $A_{\mu} \sim \hat{\sigma}_{x, y, z} \in \mathfrak{s u}(2) \longrightarrow$ synthetic spin-orbit coupling for neutral atoms

Reviews: J. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg, Rev. Mod. Phys. (2011) N Goldman, G. Juzeliunas, P. Ohberg, I. B. Spielman, Rep. Prog. Phys. (2014)

Topological states using synthetic gauge potentials

- Synthetic magnetic field \longrightarrow The quantum Hall effect with cold atoms!

- Synthetic spin-orbit coupling
\longrightarrow The quantum spin Hall effect, 2D/3D topological insulators

- Synthetic spin-orbit coupling (+ Zeeman splitting and s-wave interactions)
\longrightarrow topological superconductivity with Majorana modes

General overview of the schemes considered (so far) in experiments...

Rotation

Hamiltonian in the rotating frame:

$$
\begin{aligned}
\hat{H} & =\frac{1}{2 m}(\boldsymbol{p}-A(\boldsymbol{x}))^{2}+V(\boldsymbol{x})+W_{\text {anti-trap }}(\boldsymbol{x})+\ldots \\
\boldsymbol{A} & =m \Omega_{\mathrm{rot}} \times x \longrightarrow q \boldsymbol{B}=2 m \Omega_{\mathrm{rot}}
\end{aligned}
$$

Ref: N. Cooper, Adv. Phys. '08

Dalibard et al. '00

General overview of the schemes considered (so far) in experiments...
Ref: N. Goldman et al., Rep. Prog. Phys. (2014)

- Rotation

Raman dressing
$\hat{U}_{\text {coupl }}(x)$

$|1\rangle$ \qquad
atom-light coupling
Hamiltonian in the rotating frame:

$$
\begin{aligned}
\hat{H} & =\frac{1}{2 m}(\boldsymbol{p}-A(\boldsymbol{x}))^{2}+V(\boldsymbol{x})+W_{\text {anti-trap }}(\boldsymbol{x})+\ldots \\
\boldsymbol{A} & =m \Omega_{\mathrm{rot}} \times x \longrightarrow q \boldsymbol{B}=2 m \Omega_{\mathrm{rot}}
\end{aligned}
$$

Ref: N. Cooper, Adv. Phys. '08

The adiabatic motion of atoms in a dressed state (local energy eigenstates)

Spielman et al. ' 09

General overview of the schemes considered (so far) in experiments...

- Rotation

Raman dressing
$\hat{U}_{\text {coupl }}(x)$

|1) \qquad
atom-light coupling

Hamiltonian in the rotating frame:

$$
\begin{aligned}
\hat{H} & =\frac{1}{2 m}(\boldsymbol{p}-A(\boldsymbol{x}))^{2}+V(\boldsymbol{x})+W_{\text {anti-trap }}(\boldsymbol{x})+\ldots \\
\boldsymbol{A} & =m \Omega_{\mathrm{rot}} \times x \longrightarrow q \boldsymbol{B}=2 m \Omega_{\mathrm{rot}}
\end{aligned}
$$

Ref: N. Cooper, Adv. Phys. '08
The adiabatic motion of atoms in a dressed state (local energy eigenstates)

Spielman et al. '09

- Mimic the Aharonov-Bohm phase in optical lattices Induce complex tunneling matrix elements

\longrightarrow synthetic magnetic flux in lattices, lattice gauge theory (e.g. non-Abelian), synthetic spin-orbit coupling, ...

Different ways to induce/control the hopping in optical lattices

- The goal: $V_{0}(x) \quad J \rightarrow \mathcal{J}_{\text {eff }} e^{i \phi(x)}$

- Option 1: Use the internal states $\omega_{g e}$

- Option 2: Shake!

- Option 3: Combine superlattices and resonant time-modulations

Reviews:

Dalibard, Gerbier, Juzeliunas, Ohberg, RMP '10 Goldman, Juzeliunas, Ohberg, Spielman, RPP '14

Theory (proposals):

Jaksch \& Zoller, NJP ‘03
Gerbier \& Dalibard, NJP '10

Experiments (since 2011):

Struck, Eckardt, Sengstock, Lewenstein et al. (Hamburg) Jotzu, Esslinger et al. (Zurich)

Experiments (since 2011):
Aidelsburger, Bloch et al. (MPQ)
Miyake, Ketterle et al. (MIT)

Outline

Part 1: Shaking atoms!
Generating effective Hamiltonians: "Floquet" engineering
Topological matter by shaking atoms
Some final remarks about energy scales
Part 2: Seeing topology in the lab!
Loading atoms into topological bands
Anomalous velocity and Chern-number measurements
Seeing topological edge states with atoms
Part 3: Using internal atomic states!
Cold Atoms $=$ moving 2 -level systems
Internal states in optical lattices: laser-induced tunneling
Synthetic dimensions: From 2D to 4D quantum Hall effects

Part 1：Shaking atoms！

2015 Arnold Sommerfeld School，August－September 2015

The general picture : A static system is modulated periodically in time

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t), \quad \hat{V}(t+T)=\hat{V}(t), \quad T=2 \pi / \omega: \text { the period }
$$

The general picture : A static system is modulated periodically in time

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t), \quad \hat{V}(t+T)=\hat{V}(t), \quad T=2 \pi / \omega: \text { the period }
$$

\hat{H}_{0}
Cold atoms in optical lattices

Cold atoms on the surface of a chip

Electrons in a material (ex: graphene, semiconductors,...)

Refs: Cayssol, Dora, Simon and Moessner (Phys. Status Solidi RRL 2013), M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan and V. Pellegrini (Nat. Nanotech. 2013).

Helical waveguides (time $=$ a spatial direction)

Our goal: designing topological models by shaking atoms

- The basic concept:

- Example 1: The Harper-Hofstadter model

$$
\begin{aligned}
\hat{H}=-J \sum_{m, n} & \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n} \\
& +e^{i 2 \pi \alpha n} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}+\text { H.c. }
\end{aligned}
$$

$\alpha=\Phi / \Phi_{0}$: uniform flux per plaquette (in units of flux quantum)

Our goal: designing topological models by shaking atoms

- The basic concept:

- Example 1: The Harper-Hofstadter model

	(\$)	(Φ	(
$n+1-$	(\$)	(\$)	(\$)
	(((
	$m \quad m+1$		

$$
\begin{aligned}
\hat{H}=-J \sum_{m, n} & \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n} \\
& +e^{i 2 \pi \alpha n} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}+\text { H.c. }
\end{aligned}
$$

$\alpha=\Phi / \Phi_{0}$: uniform flux per plaquette (in units of flux quantum)

$E |$| $\alpha=1 / 5$ |
| :--- |
| $k_{k_{x}}$ |
| $N_{\mathrm{ch}} \neq 0$ |
| |
| $N_{\mathrm{ch}} \neq 0$ |

- Example 2: The Haldane model

Generating effective Hamiltonians:
 "Floquet" engineering

The central notion : the effective time-independent Hamiltonian

- A static system \hat{H}_{0} is modulated periodically in time

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t), \quad \hat{V}(t+T)=\hat{V}(t), \quad T=2 \pi / \omega: \text { the period }
$$

- Generally, one adopts a stroboscopic view $\left[T \ll t_{\text {charact }}\right]$: $t=N T, N \in \mathbb{N}$

$$
|\psi(t=N T)\rangle=[\hat{U}(T)]^{N}\left|\psi_{0}\right\rangle=\left[\mathcal{T} e^{-i \int_{0}^{T} \hat{H}(\tau) \mathrm{d} \tau}\right]^{N}\left|\psi_{0}\right\rangle
$$

The central notion : the effective time-independent Hamiltonian

- A static system \hat{H}_{0} is modulated periodically in time

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t), \quad \hat{V}(t+T)=\hat{V}(t), \quad T=2 \pi / \omega: \text { the period }
$$

- Generally, one adopts a stroboscopic view $\left[T \ll t_{\text {charact }}\right]$: $t=N T, N \in \mathbb{N}$

$$
|\psi(t=N T)\rangle=[\hat{U}(T)]^{N}\left|\psi_{0}\right\rangle=\left[\mathcal{T} e^{-i \int_{0}^{T} \hat{H}(\tau) \mathrm{d} \tau}\right]^{N}\left|\psi_{0}\right\rangle=\left(e^{-i T \hat{\mathcal{H}}_{\mathrm{eff}}}\right)^{N}\left|\psi_{0}\right\rangle
$$

- Over each period T, the system evolves according to a time-independent Hamiltonian $\hat{\mathcal{H}}_{\text {eff }}$
- A static system \hat{H}_{0} is modulated periodically in time

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t), \quad \hat{V}(t+T)=\hat{V}(t), \quad T=2 \pi / \omega: \text { the period }
$$

- Generally, one adopts a stroboscopic view $\left[T \ll t_{\text {charact }}\right]$: $t=N T, N \in \mathbb{N}$

$$
|\psi(t=N T)\rangle=[\hat{U}(T)]^{N}\left|\psi_{0}\right\rangle=\left[\mathcal{T} e^{-i \int_{0}^{T} \hat{H}(\tau) \mathrm{d} \tau}\right]^{N}\left|\psi_{0}\right\rangle=\left(e^{-i T \hat{\mathcal{H}}_{\text {eff }}}\right)^{N}\left|\psi_{0}\right\rangle
$$

- Over each period T, the system evolves according to a time-independent Hamiltonian $\hat{\mathcal{H}}_{\text {eff }}$
- Driving is interesting : \hat{H}_{0} ("normal") $\rightarrow \hat{\mathcal{H}}_{\text {eff }}$ (potentially) Super !
- Tuning $\hat{V}(t)$: A versatile tool to engineer gauge fields, topological bands, ...

$$
\hat{\mathcal{H}}_{\text {eff }}=\frac{1}{2 m}\left[\left(\hat{p}_{x}+\hat{\mathcal{A}}_{x}\right)^{2}+\left(\hat{p}_{y}+\hat{\mathcal{A}}_{y}\right)^{2}\right]+\ldots
$$

- A static system \hat{H}_{0} is modulated periodically in time

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t), \quad \hat{V}(t+T)=\hat{V}(t), \quad T=2 \pi / \omega: \text { the period }
$$

- Generally, one adopts a stroboscopic view $\left[T \ll t_{\text {charact }}\right]$: $t=N T, N \in \mathbb{N}$

$$
|\psi(t=N T)\rangle=[\hat{U}(T)]^{N}\left|\psi_{0}\right\rangle=\left[\mathcal{T} e^{-i \int_{0}^{T} \hat{H}(\tau) \mathrm{d} \tau}\right]^{N}\left|\psi_{0}\right\rangle=\left(e^{-i T \hat{\mathcal{H}}_{\text {eff }}}\right)^{N}\left|\psi_{0}\right\rangle
$$

- Over each period T, the system evolves according to a time-independent Hamiltonian $\hat{\mathcal{H}}_{\text {eff }}$
- Driving is interesting : \hat{H}_{0} ("normal") $\rightarrow \hat{\mathcal{H}}_{\text {eff }}$ (potentially) Super !
- Tuning $\hat{V}(t)$: A versatile tool to engineer gauge fields, topological bands, ...

$$
\hat{\mathcal{H}}_{\text {eff }}=\frac{1}{2 m}\left[\left(\hat{p}_{x}+\hat{\mathcal{A}}_{x}\right)^{2}+\left(\hat{p}_{y}+\hat{\mathcal{A}}_{y}\right)^{2}\right]+\ldots
$$

- In general, the effective Hamiltonian $\hat{\mathcal{H}}_{\text {eff }}$ cannot be derived exactly...

$$
e^{-i T \hat{\mathcal{H}}_{\text {eff }}}=\mathcal{T} e^{-i \int_{0}^{T} \hat{H}(\tau) \mathrm{d} \tau}=\ldots ?
$$

The effective Hamiltonian and the Magnus expansion

- We want to evaluate the time-evolution operator between times t_{0} and t_{f}

$$
\hat{U}\left(t_{f} ; t_{0}\right)=\mathcal{T} \exp \left(-i \int_{t_{0}}^{t_{f}} \hat{H}(\tau) \mathrm{d} \tau\right), \quad \hat{H}(t+T)=\hat{H}(t) .
$$

- Stroboscopic evolution (i.e. neglect micro-motion) : $t_{f}=t_{0}+N T$ with $N \in \mathbb{N}$ $\hat{U}\left(t_{f} ; t_{0}\right)=\left[\hat{U}\left(t_{0}+T ; t_{0}\right)\right]^{N}, \quad$ where $\hat{U}\left(t_{0}+T ; t_{0}\right)=\mathcal{T} \exp \left(-i \int_{t_{0}}^{t_{0}+T} \hat{H}(\tau) \mathrm{d} \tau\right)$

The effective Hamiltonian and the Magnus expansion

- We want to evaluate the time-evolution operator between times t_{0} and t_{f}

$$
\hat{U}\left(t_{f} ; t_{0}\right)=\mathcal{T} \exp \left(-i \int_{t_{0}}^{t_{f}} \hat{H}(\tau) \mathrm{d} \tau\right), \quad \hat{H}(t+T)=\hat{H}(t) .
$$

- Stroboscopic evolution (i.e. neglect micro-motion) : $t_{f}=t_{0}+N T$ with $N \in \mathbb{N}$

$$
\hat{U}\left(t_{f} ; t_{0}\right)=\left[\hat{U}\left(t_{0}+T ; t_{0}\right)\right]^{N}, \quad \text { where } \hat{U}\left(t_{0}+T ; t_{0}\right)=\mathcal{T} \exp \left(-i \int_{t_{0}}^{t_{0}+T} \hat{H}(\tau) \mathrm{d} \tau\right)
$$

- The time-ordered integral can be expanded through the Magnus formula

$$
\hat{U}\left(t_{2} ; t_{1}\right)=\exp \left\{-i \int_{t_{1}}^{t_{2}} \hat{H}(t) \mathrm{d} t-\frac{i}{2} \int_{t_{1}}^{t_{2}} \int_{t_{1}}^{t}[\hat{H}(t), \hat{H}(\tau)] \mathrm{d} \tau \mathrm{~d} t+\ldots\right\}
$$

- We want to evaluate the time-evolution operator between times t_{0} and t_{f}

$$
\hat{U}\left(t_{f} ; t_{0}\right)=\mathcal{T} \exp \left(-i \int_{t_{0}}^{t_{f}} \hat{H}(\tau) \mathrm{d} \tau\right), \quad \hat{H}(t+T)=\hat{H}(t)
$$

- Stroboscopic evolution (i.e. neglect micro-motion) : $t_{f}=t_{0}+N T$ with $N \in \mathbb{N}$

$$
\hat{U}\left(t_{f} ; t_{0}\right)=\left[\hat{U}\left(t_{0}+T ; t_{0}\right)\right]^{N}, \quad \text { where } \hat{U}\left(t_{0}+T ; t_{0}\right)=\mathcal{T} \exp \left(-i \int_{t_{0}}^{t_{0}+T} \hat{H}(\tau) \mathrm{d} \tau\right)
$$

- The time-ordered integral can be expanded through the Magnus formula

$$
\hat{U}\left(t_{2} ; t_{1}\right)=\exp \left\{-i \int_{t_{1}}^{t_{2}} \hat{H}(t) \mathrm{d} t-\frac{i}{2} \int_{t_{1}}^{t_{2}} \int_{t_{1}}^{t}[\hat{H}(t), \hat{H}(\tau)] \mathrm{d} \tau \mathrm{~d} t+\ldots\right\}
$$

- Setting $\hat{U}\left(t_{0}+T ; t_{0}\right)=e^{-i T \hat{H}_{F}}$, the effective Hamiltonian is given by the series

$$
\begin{equation*}
\hat{H}_{\mathrm{F}}=(1 / T) \int_{t_{0}}^{T+t_{0}} \hat{H}(t) \mathrm{d} t-\frac{i}{2 T} \int_{t_{0}}^{t_{0}+T} \int_{t_{0}}^{t}[\hat{H}(t), \hat{H}(\tau)] \mathrm{d} \tau \mathrm{~d} t+\ldots \tag{1}
\end{equation*}
$$

- We want to evaluate the time-evolution operator between times t_{0} and t_{f}

$$
\hat{U}\left(t_{f} ; t_{0}\right)=\mathcal{T} \exp \left(-i \int_{t_{0}}^{t_{f}} \hat{H}(\tau) \mathbf{d} \tau\right), \quad \hat{H}(t+T)=\hat{H}(t)
$$

- Stroboscopic evolution (i.e. neglect micro-motion) : $t_{f}=t_{0}+N T$ with $N \in \mathbb{N}$

$$
\hat{U}\left(t_{f} ; t_{0}\right)=\left[\hat{U}\left(t_{0}+T ; t_{0}\right)\right]^{N}, \quad \text { where } \hat{U}\left(t_{0}+T ; t_{0}\right)=\mathcal{T} \exp \left(-i \int_{t_{0}}^{t_{0}+T} \hat{H}(\tau) \mathrm{d} \tau\right)
$$

- The time-ordered integral can be expanded through the Magnus formula

$$
\hat{U}\left(t_{2} ; t_{1}\right)=\exp \left\{-i \int_{t_{1}}^{t_{2}} \hat{H}(t) \mathrm{d} t-\frac{i}{2} \int_{t_{1}}^{t_{2}} \int_{t_{1}}^{t}[\hat{H}(t), \hat{H}(\tau)] \mathrm{d} \tau \mathrm{~d} t+\ldots\right\}
$$

- Setting $\hat{U}\left(t_{0}+T ; t_{0}\right)=e^{-i T \hat{H}_{F}}$, the effective Hamiltonian is given by the series

$$
\begin{equation*}
\hat{H}_{\mathrm{F}}=(1 / T) \int_{t_{0}}^{T+t_{0}} \hat{H}(t) \mathrm{d} t-\frac{i}{2 T} \int_{t_{0}}^{t_{0}+T} \int_{t_{0}}^{t}[\hat{H}(t), \hat{H}(\tau)] \mathrm{d} \tau \mathrm{~d} t+\ldots \tag{1}
\end{equation*}
$$

- If we expand $\hat{H}(t)$ into its Fourier components,

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t)=\hat{H}_{0}+\sum_{j \neq 0} \hat{V}^{(j)} \exp (i j \omega t)
$$

and perform the integrals in Eq. 1, we obtain the equivalent expression

$$
\hat{H}_{\mathrm{F}}=\hat{H}_{0}+\frac{1}{\omega} \sum_{j>0} \frac{1}{j}\left\{\left[\hat{V}^{(+j)}, \hat{V}^{(-j)}\right]-e^{i j \omega t_{0}}\left[\hat{V}^{(+j)}, \hat{H}_{0}\right]+e^{-i j \omega t_{0}}\left[\hat{V}^{(-j)}, \hat{H}_{0}\right]\right\}+\ldots
$$

- The effective Hamiltonian is given by a perturbative expansion in powers of $(1 / \omega)$:

$$
\begin{aligned}
\hat{H}_{\mathrm{F}}=\hat{H}_{0} & +\frac{1}{\omega} \sum_{j>0} \frac{1}{j}\left\{\left[\hat{V}^{(+j)}, \hat{V}^{(-j)}\right]-e^{i j \omega t_{0}}\left[\hat{V}^{(+j)}, \hat{H}_{0}\right]+e^{-i j \omega t_{0}}\left[\hat{V}^{(-j)}, \hat{H}_{0}\right]\right\} \\
& +\mathcal{O}\left(1 / \omega^{2}\right)
\end{aligned}
$$

- Useful to calculate effective Hamiltonians in the high-frequency regime $\omega \gg$!
- Useful to identify interesting time-modulated (cold-atom) setups [i.e. $\left.\hat{H}_{0}, \hat{V}(t)\right]$!
- The effective Hamiltonian is given by a perturbative expansion in powers of $(1 / \omega)$:

$$
\begin{aligned}
\hat{H}_{\mathrm{F}}=\hat{H}_{0} & +\frac{1}{\omega} \sum_{j>0} \frac{1}{j}\left\{\left[\hat{V}^{(+j)}, \hat{V}^{(-j)}\right]-e^{i j \omega t_{0}}\left[\hat{V}^{(+j)}, \hat{H}_{0}\right]+e^{-i j \omega t_{0}}\left[\hat{V}^{(-j)}, \hat{H}_{0}\right]\right\} \\
& +\mathcal{O}\left(1 / \omega^{2}\right)
\end{aligned}
$$

- Useful to calculate effective Hamiltonians in the high-frequency regime $\omega \gg$!
- Useful to identify interesting time-modulated (cold-atom) setups [i.e. $\left.\hat{H}_{0}, \hat{V}(t)\right]$!
- Several issues and subtleties should be addressed :
- The effective Hamiltonian $\hat{H}_{\mathrm{F}}\left(t_{0}\right)$ explicitly depends on the initial time $t_{0} \ldots$
\longrightarrow What is the role of t_{0}-terms?
- Is micro-motion really irrelevant? How can this be evaluated?
- Is the convergence of the series guaranteed? What if $\hat{H}_{0}, \hat{V}^{(j)} \sim \omega$?

The t_{0}-dependent terms : a simple illustration

- Consider a particle driven by a time-modulated force F :

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t)=\frac{\hat{p}^{2}}{2 m}+F \cos (\omega t) \hat{x}
$$

- The Magnus expansion provides the (exact) effective Hamiltonian

$$
\hat{H}_{\mathrm{F}}\left(t_{0}\right)=\frac{1}{2 m}\left[\hat{p}+\mathcal{A}\left(t_{0}\right)\right]^{2}+\mathrm{cst}, \quad \text { where } \mathcal{A}\left(t_{0}\right)=\frac{F}{\omega} \sin \left(\omega t_{0}\right) .
$$

- The driving only modifies the initial mean velocity : $v\left(t_{0}\right) \rightarrow v\left(t_{0}\right)+\mathcal{A}\left(t_{0}\right) / m$

The t_{0}-dependent terms : a simple illustration

- Consider a particle driven by a time-modulated force F :

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t)=\frac{\hat{p}^{2}}{2 m}+F \cos (\omega t) \hat{x}
$$

- The Magnus expansion provides the (exact) effective Hamiltonian

$$
\hat{H}_{\mathrm{F}}\left(t_{0}\right)=\frac{1}{2 m}\left[\hat{p}+\mathcal{A}\left(t_{0}\right)\right]^{2}+\mathrm{cst}, \quad \text { where } \mathcal{A}\left(t_{0}\right)=\frac{F}{\omega} \sin \left(\omega t_{0}\right) .
$$

- The driving only modifies the initial mean velocity : $v\left(t_{0}\right) \rightarrow v\left(t_{0}\right)+\mathcal{A}\left(t_{0}\right) / m$
- The t_{0}-dependent terms can be removed by a unitary (gauge) transformation

$$
\begin{aligned}
& \hat{H}_{\mathrm{F}}\left(t_{0}\right)=\hat{S}^{\dagger}\left(t_{0}\right) \hat{H}_{0} \hat{S}\left(t_{0}\right) \quad \text { where } \hat{S}\left(t_{0}\right)=\exp \left[i \mathcal{A}\left(t_{0}\right) \hat{x}\right] \\
& \longrightarrow \hat{U}\left(T+t_{0} ; t_{0}\right)=e^{-i T \hat{H}_{\mathrm{F}}\left(t_{0}\right)}=\hat{S}^{\dagger} e^{-i T \hat{H}_{0}} \hat{S}
\end{aligned}
$$

The t_{0}-dependent terms : a simple illustration

- Consider a particle driven by a time-modulated force F :

$$
\hat{H}(t)=\hat{H}_{0}+\hat{V}(t)=\frac{\hat{p}^{2}}{2 m}+F \cos (\omega t) \hat{x}
$$

- The Magnus expansion provides the (exact) effective Hamiltonian

$$
\hat{H}_{\mathrm{F}}\left(t_{0}\right)=\frac{1}{2 m}\left[\hat{p}+\mathcal{A}\left(t_{0}\right)\right]^{2}+\mathrm{cst}, \quad \text { where } \mathcal{A}\left(t_{0}\right)=\frac{F}{\omega} \sin \left(\omega t_{0}\right) .
$$

- The driving only modifies the initial mean velocity : $v\left(t_{0}\right) \rightarrow v\left(t_{0}\right)+\mathcal{A}\left(t_{0}\right) / m$
- The t_{0}-dependent terms can be removed by a unitary (gauge) transformation

$$
\begin{aligned}
& \hat{H}_{\mathrm{F}}\left(t_{0}\right)=\hat{S}^{\dagger}\left(t_{0}\right) \hat{H}_{0} \hat{S}\left(t_{0}\right) \quad \text { where } \hat{S}\left(t_{0}\right)=\exp \left[i \mathcal{A}\left(t_{0}\right) \hat{x}\right] \\
& \longrightarrow \hat{U}\left(T+t_{0} ; t_{0}\right)=e^{-i T \hat{H}_{\mathrm{F}}\left(t_{0}\right)}=\hat{S}^{\dagger} e^{-i T \hat{H}_{0}} \hat{S}
\end{aligned}
$$

After a long time: $t_{f}=t_{0}+N T$

$$
\left|\psi\left(t_{f}\right)\right\rangle=\hat{S}^{\dagger} e^{-i N T \hat{H}_{0}} \hat{S}\left|\psi_{0}\right\rangle
$$

$$
\hat{S}\left(t_{0}\right)=\exp \left[i \mathcal{A}\left(t_{0}\right) \hat{x}\right]: \text { initial kick }
$$

- In general, there are three distinct notions :
- (1) The initial kick related to the initial phase of the modulation
- (2) The long-time dynamics ruled by an effective Hamiltonian $\hat{H}_{\text {eff }} \neq \hat{H}_{\mathrm{F}}\left(t_{0}\right)$
- (3) The micro-motion (i.e. what happens within a period)

$$
\psi\left(t_{f}\right)=\underbrace{\hat{M}\left(t_{f}\right)}_{(3)} \underbrace{e^{-i\left(t_{f}-t_{i}\right) \hat{H}} \mathrm{eff}}_{(2)} \underbrace{\hat{S}\left(t_{0}\right)}_{(1)} \psi\left(t_{0}\right)
$$

- In general, there are three distinct notions :
- (1) The initial kick related to the initial phase of the modulation
- (2) The long-time dynamics ruled by an effective Hamiltonian $\hat{H}_{\text {eff }} \neq \hat{H}_{\mathrm{F}}\left(t_{0}\right)$
- (3) The micro-motion (i.e. what happens within a period)

$$
\psi\left(t_{f}\right)=\underbrace{\hat{M}\left(t_{f}\right)}_{(3)} \underbrace{e^{-i\left(t_{f}-t_{i}\right) \hat{H}} \mathrm{eff}^{\hat{S}}}_{(2)} \underbrace{\hat{S}\left(t_{0}\right)}_{(1)} \psi\left(t_{0}\right)
$$

- We can formally separate these effects by using a unitary transformation

$$
\begin{aligned}
& \psi(t) \rightarrow \phi(t)=e^{i \hat{K}(t)} \psi(t), \quad i \partial_{t} \phi(t)=\hat{H}_{\mathrm{eff}} \phi(t) \\
& \psi\left(t_{f}\right)=\hat{U}\left(t_{0} \rightarrow t_{f}\right) \psi\left(t_{i}\right)=e^{-i \hat{K}\left(t_{f}\right)} e^{-i\left(t_{f}-t_{0}\right) \hat{H}_{\mathrm{eff}}} e^{i \hat{K}\left(t_{0}\right)} \psi\left(t_{0}\right)
\end{aligned}
$$

- In general, there are three distinct notions :
- (1) The initial kick related to the initial phase of the modulation
- (2) The long-time dynamics ruled by an effective Hamiltonian $\hat{H}_{\text {eff }} \neq \hat{H}_{\mathrm{F}}\left(t_{0}\right)$
- (3) The micro-motion (i.e. what happens within a period)

$$
\psi\left(t_{f}\right)=\underbrace{\hat{M}\left(t_{f}\right)}_{(3)} \underbrace{e^{-i\left(t_{f}-t_{i}\right) \hat{H}} \mathrm{eff}^{\hat{S}}}_{(2)} \underbrace{\hat{S}\left(t_{0}\right)}_{(1)} \psi\left(t_{0}\right)
$$

- We can formally separate these effects by using a unitary transformation

$$
\begin{aligned}
& \psi(t) \rightarrow \phi(t)=e^{i \hat{K}(t)} \psi(t), \quad i \partial_{t} \phi(t)=\hat{H}_{\mathrm{eff}} \phi(t) \\
& \psi\left(t_{f}\right)=\hat{U}\left(t_{0} \rightarrow t_{f}\right) \psi\left(t_{i}\right)=e^{-i \hat{K}\left(t_{f}\right)} e^{-i\left(t_{f}-t_{0}\right) \hat{H}_{\mathrm{eff}}} e^{i \hat{K}\left(t_{0}\right)} \psi\left(t_{0}\right)
\end{aligned}
$$

- Question : Is it possible to compute $\hat{H}_{\text {eff }}$ and $\hat{K}(t)$ explicitly ?
- We consider the time-dependent unitary transformation

$$
i \partial_{t} \psi(t)=\hat{H}(t) \psi(t), \quad \psi(t) \rightarrow \phi(t)=e^{i \hat{K}(t)} \psi(t)
$$

- In the new frame the Hamiltonian is imposed to be time-independent :

$$
i \partial_{t} \phi(t)=\hat{H}_{\mathrm{eff}} \phi(t)
$$

- The relation between $\hat{H}(t)$ and $\hat{H}_{\text {eff }}$ is given by the usual transformation

$$
\begin{equation*}
\hat{H}_{\mathrm{eff}}=e^{i \hat{K}(t)} \hat{H}(t) e^{-i \hat{K}(t)}+i\left(\frac{\partial e^{i \hat{K}(t)}}{\partial t}\right) e^{-i \hat{K}(t)} \tag{*}
\end{equation*}
$$

- We expand $\hat{H}_{\text {eff }}$ and $\hat{K}(t)$ in powers of $1 / \omega$

$$
\hat{H}_{\mathrm{eff}}=\sum_{n=0}^{\infty} \frac{1}{\omega^{n}} \hat{H}_{\mathrm{eff}}^{(n)}, \quad \hat{K}(t)=\sum_{n=1}^{\infty} \frac{1}{\omega^{n}} \hat{K}^{(n)}
$$

\longrightarrow insert into Eq. $(*)$ to get $\hat{H}_{\text {eff }}^{(0)}, \hat{H}_{\text {eff }}^{(1)}, \hat{H}_{\text {eff }}^{(2)}, \ldots$ and $\hat{K}^{(1)}, \hat{K}^{(2)}, \ldots$

- We consider the time-dependent unitary transformation

$$
i \partial_{t} \psi(t)=\hat{H}(t) \psi(t), \quad \psi(t) \rightarrow \phi(t)=e^{i \hat{K}(t)} \psi(t)
$$

- In the new frame the Hamiltonian is imposed to be time-independent :

$$
i \partial_{t} \phi(t)=\hat{H}_{\mathrm{eff}} \phi(t)
$$

- The relation between $\hat{H}(t)$ and $\hat{H}_{\text {eff }}$ is given by the usual transformation

$$
\begin{equation*}
\hat{H}_{\mathrm{eff}}=e^{i \hat{K}(t)} \hat{H}(t) e^{-i \hat{K}(t)}+i\left(\frac{\partial e^{i \hat{K}(t)}}{\partial t}\right) e^{-i \hat{K}(t)} \tag{*}
\end{equation*}
$$

- We expand $\hat{H}_{\text {eff }}$ and $\hat{K}(t)$ in powers of $1 / \omega$

$$
\hat{H}_{\mathrm{eff}}=\sum_{n=0}^{\infty} \frac{1}{\omega^{n}} \hat{H}_{\mathrm{eff}}^{(n)}, \quad \hat{K}(t)=\sum_{n=1}^{\infty} \frac{1}{\omega^{n}} \hat{K}^{(n)}
$$

\longrightarrow insert into Eq. (*) to get $\hat{H}_{\text {eff }}^{(0)}, \hat{H}_{\text {eff }}^{(1)}, \hat{H}_{\text {eff }}^{(2)}, \ldots$ and $\hat{K}^{(1)}, \hat{K}^{(2)}, \ldots$

- We then have the full time-evolution :

$$
\psi\left(t_{f}\right)=\hat{U}\left(t_{0} \rightarrow t_{f}\right) \psi\left(t_{i}\right)=e^{-i \hat{K}\left(t_{f}\right)} e^{-i\left(t_{f}-t_{0}\right) \hat{H}_{\mathrm{eff}}} e^{i \hat{K}\left(t_{0}\right)} \psi\left(t_{0}\right)
$$

- For a general time-periodic problem

$$
\hat{H}(t)=\hat{H}_{0}+\sum_{j=1}^{\infty} V^{(j)} e^{i j \omega t}+V^{(-j)} e^{-i j \omega t}
$$

the long-time dynamics is well-captured by the effective Hamiltonian :

$$
\begin{aligned}
\hat{H}_{\text {eff }}= & \hat{H}_{0}+\frac{1}{\omega} \sum_{j=1}^{\infty} \frac{1}{j}\left[V^{(j)}, V^{(-j)}\right]+\frac{1}{2 \omega^{2}} \sum_{j=1}^{\infty} \frac{1}{j^{2}}\left(\left[\left[V^{(j)}, \hat{H}_{0}\right], V^{(-j)}\right]+\text { h.c. }\right) \\
& +\frac{1}{3 \omega^{2}} \sum_{j, l=1}^{\infty} \frac{1}{j l}\left(\left[V^{(j)},\left[V^{(l)}, V^{(-j-l)}\right]\right]-\left[V^{(j)},\left[V^{(-l)}, V^{(l-j)}\right]\right]+\text { h.c. }\right)+\ldots,
\end{aligned}
$$

\longrightarrow good basis to identify schemes leading to topological properties!

- The micro-motion + initial-kick effects are well described by the kick operator :

$$
\hat{K}(t)=\frac{1}{i \omega} \sum_{j=1}^{\infty} \frac{1}{j}\left(V^{(j)} e^{i j \omega t}-V^{(-j)} e^{-i j \omega t}\right)+\ldots
$$

\longrightarrow good basis to estimate the effects due to micro-motion on observables!

Dealing with the convergence of the series [Goldman, Dalibard et al., PRA '15]

- The perturbative approach works fine if $\hat{H}(t)$ remains finite for $\omega \rightarrow \infty$
- However, we might deal with systems of the form

$$
\hat{H}(t)=\hat{H}_{\text {regular }}(t)+\omega \hat{O}(t)
$$

Examples : strong-driving regime, static (resonant) energy offset $\Delta=\hbar \omega$

- The perturbative approach works fine if $\hat{H}(t)$ remains finite for $\omega \rightarrow \infty$
- However, we might deal with systems of the form

$$
\hat{H}(t)=\hat{H}_{\text {regular }}(t)+\omega \hat{O}(t)
$$

Examples : strong-driving regime, static (resonant) energy offset $\Delta=\hbar \omega$

- Solution : perform a unitary transformation that removes all diverging terms !

$$
\begin{aligned}
& |\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=\hat{R}(t)|\psi\rangle, \hat{R}(t)=\mathcal{T} \exp \left\{i \omega \int_{0}^{t} \hat{O}(\tau) \mathrm{d} \tau\right\} \\
& \hat{H}(t) \rightarrow \hat{\mathcal{H}}(t)=\hat{R}(t) \hat{H}(t) \hat{R}^{\dagger}(t)-i \hat{R}(t) \partial_{t} \hat{R}^{\dagger}(t)=\hat{R}(t) \hat{H}_{\text {regular }} \hat{R}^{\dagger}(t)
\end{aligned}
$$

- The perturbative approach works fine if $\hat{H}(t)$ remains finite for $\omega \rightarrow \infty$
- However, we might deal with systems of the form

$$
\hat{H}(t)=\hat{H}_{\text {regular }}(t)+\omega \hat{O}(t)
$$

Examples : strong-driving regime, static (resonant) energy offset $\Delta=\hbar \omega$

- Solution : perform a unitary transformation that removes all diverging terms !

$$
\begin{aligned}
& |\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=\hat{R}(t)|\psi\rangle, \hat{R}(t)=\mathcal{T} \exp \left\{i \omega \int_{0}^{t} \hat{O}(\tau) \mathrm{d} \tau\right\} \\
& \hat{H}(t) \rightarrow \hat{\mathcal{H}}(t)=\hat{R}(t) \hat{H}(t) \hat{R}^{\dagger}(t)-i \hat{R}(t) \partial_{t} \hat{R}^{\dagger}(t)=\hat{R}(t) \hat{H}_{\text {regular }} \hat{R}^{\dagger}(t)
\end{aligned}
$$

- If $\hat{R}(t)$ and $\hat{\mathcal{H}}(t)$ can be computed explicitly, i.e. $\left[\hat{O}(t), \hat{O}\left(t^{\prime}\right)\right]=0$, then we are fine :

$$
\hat{\mathcal{H}}(t)=\hat{\mathcal{H}}_{0}+\sum_{j=1}^{\infty} \hat{\mathcal{V}}^{(j)} e^{i j \omega t}+\hat{\mathcal{V}}^{(-j)} e^{-i j \omega t}: \text { is regular in the limit } \omega \rightarrow \infty
$$

and we can apply our formula for the effective Hamiltonian (in the moving frame) :

$$
\hat{\mathcal{H}}_{\text {eff }}=\hat{\mathcal{H}}_{0}+\frac{1}{\omega} \sum_{j=1}^{\infty} \frac{1}{j}\left[\hat{\mathcal{V}}^{(j)}, \hat{\mathcal{V}}^{(-j)}\right]+\frac{1}{2 \omega^{2}} \sum_{j=1}^{\infty} \frac{1}{j^{2}}\left(\left[\left[\hat{\mathcal{V}}^{(j)}, \hat{\mathcal{H}}_{0}\right], \hat{\mathcal{V}}^{(-j)}\right]+\text { h.c. }\right) \ldots,
$$

Topological "Floquet" matter by shaking atoms

Our goal: designing topological models by shaking atoms

- The basic concept:

- Example 1: The Harper-Hofstadter model

	(\$)	(Φ	(
$n+1-$	(\$)	(\$)	(\$)
	(((
	$m \quad m+1$		

$$
\begin{aligned}
\hat{H}=-J \sum_{m, n} & \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n} \\
& +e^{i 2 \pi \alpha n} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}+\text { H.c. }
\end{aligned}
$$

$\alpha=\Phi / \Phi_{0}$: uniform flux per plaquette (in units of flux quantum)

$E |$| $\alpha=1 / 5$ |
| :--- |
| $k_{k_{x}}$ |
| $N_{\mathrm{ch}} \neq 0$ |
| |
| $N_{\mathrm{ch}} \neq 0$ |

- Example 2: The Haldane model

Useful example ... in view of creating fluxes in optical lattices

- Let us simplify the problem of the time-modulated superlattice (N integer)

Useful example ... in view of creating fluxes in optical lattices

- Let us simplify the problem of the time-modulated superlattice (N integer)

- We write the Hamiltonian of the two-level system as

$$
\hat{H}(t)=J(|0\rangle\langle 1|+|1\rangle\langle 0|)+N \omega|1\rangle\langle 1|+\kappa \cos (\omega t+\phi)|0\rangle\langle 0|, \quad J \ll \omega
$$

- In the strong-driving regime, $\kappa=K_{0} \omega$ with $K_{0} \sim 1$: two diverging terms !

Useful example ... in view of creating fluxes in optical lattices

- Let us simplify the problem of the time-modulated superlattice (N integer)

- We write the Hamiltonian of the two-level system as

$$
\hat{H}(t)=J(|0\rangle\langle 1|+|1\rangle\langle 0|)+N \omega|1\rangle\langle 1|+\kappa \cos (\omega t+\phi)|0\rangle\langle 0|, \quad J \ll \omega
$$

- In the strong-driving regime, $\kappa=K_{0} \omega$ with $K_{0} \sim 1$: two diverging terms !
- Let us perform the unitary transformation to remove them :

$$
\hat{R}(t)=\exp \left\{i\left[N \omega t|1\rangle\langle 1|+K_{0} \sin (\omega t+\phi)\right]|0\rangle\langle 0|\right\}
$$

$$
\rightarrow \hat{\mathcal{H}}(t)=J|0\rangle\langle 1| \sum_{j=-\infty}^{\infty} e^{i j \omega t} \mathcal{J}_{N+j}\left(K_{0}\right) e^{i(j+N) \phi}+\text { h.c. } \quad\left[e^{i x \sin (y)}=\sum_{n=-\infty}^{\infty} \mathcal{J}_{n}(x) e^{i n y}\right]
$$

- To lowest order, the effective Hamiltonian is given by

$$
\hat{\mathcal{H}}_{\mathrm{eff}} \approx \hat{\mathcal{H}}_{0}=J \mathcal{J}_{N}\left(K_{0}\right) e^{i N \phi}|0\rangle\langle 1|+\text { h.c. }
$$

Useful example ... in view of creating fluxes in optical lattices

- Let us simplify the problem of the time-modulated superlattice (N integer)

- We write the Hamiltonian of the two-level system as

$$
\hat{H}(t)=J(|0\rangle\langle 1|+|1\rangle\langle 0|)+N \omega|1\rangle\langle 1|+\kappa \cos (\omega t+\phi)|0\rangle\langle 0|, \quad J \ll \omega
$$

- In the strong-driving regime, $\kappa=K_{0} \omega$ with $K_{0} \sim 1$: two diverging terms !
- Let us perform the unitary transformation to remove them :

$$
\hat{R}(t)=\exp \left\{i\left[N \omega t|1\rangle\langle 1|+K_{0} \sin (\omega t+\phi)\right]|0\rangle\langle 0|\right\}
$$

$$
\rightarrow \hat{\mathcal{H}}(t)=J|0\rangle\langle 1| \sum_{j=-\infty}^{\infty} e^{i j \omega t} \mathcal{J}_{N+j}\left(K_{0}\right) e^{i(j+N) \phi}+\text { h.c. } \quad\left[e^{i x \sin (y)}=\sum_{n=-\infty}^{\infty} \mathcal{J}_{n}(x) e^{i n y}\right]
$$

- To lowest order, the effective Hamiltonian is given by

$$
\hat{\mathcal{H}}_{\mathrm{eff}} \approx \hat{\mathcal{H}}_{0}=J \mathcal{J}_{N}\left(K_{0}\right) e^{i N \phi}|0\rangle\langle 1|+\text { h.c. }
$$

- No offset $N=0 \rightarrow \hat{\mathcal{H}}_{\text {eff }} \approx J \mathcal{J}_{0}\left(K_{0}\right)|0\rangle\langle 1|+$ h.c. : the effective coupling is real!

Useful example ... in view of creating fluxes in optical lattices

- Let us simplify the problem of the time-modulated superlattice (N integer)

- We write the Hamiltonian of the two-level system as

$$
\hat{H}(t)=J(|0\rangle\langle 1|+|1\rangle\langle 0|)+N \omega|1\rangle\langle 1|+\kappa \cos (\omega t+\phi)|0\rangle\langle 0|, \quad J \ll \omega
$$

- In the strong-driving regime, $\kappa=K_{0} \omega$ with $K_{0} \sim 1$: two diverging terms !
- Let us perform the unitary transformation to remove them :

$$
\hat{R}(t)=\exp \left\{i\left[N \omega t|1\rangle\langle 1|+K_{0} \sin (\omega t+\phi)\right]|0\rangle\langle 0|\right\}
$$

$$
\rightarrow \hat{\mathcal{H}}(t)=J|0\rangle\langle 1| \sum_{j=-\infty}^{\infty} e^{i j \omega t} \mathcal{J}_{N+j}\left(K_{0}\right) e^{i(j+N) \phi}+\text { h.c. } \quad\left[e^{i x \sin (y)}=\sum_{n=-\infty}^{\infty} \mathcal{J}_{n}(x) e^{i n y}\right]
$$

- To lowest order, the effective Hamiltonian is given by

$$
\hat{\mathcal{H}}_{\text {eff }} \approx \hat{\mathcal{H}}_{0}=J \mathcal{J}_{N}\left(K_{0}\right) e^{i N \phi}|0\rangle\langle 1|+\text { h.c. }
$$

- No offset $N=0 \rightarrow \hat{\mathcal{H}}_{\text {eff }} \approx J \mathcal{J}_{0}\left(K_{0}\right)|0\rangle\langle 1|+$ h.c. : the effective coupling is real !
- $N=1 \rightarrow \hat{\mathcal{H}}_{\text {eff }} \approx J \mathcal{J}_{1}\left(K_{0}\right) e^{i \phi}|0\rangle\langle 1|+$ h.c. : the effective coupling is complex !

The shaken optical lattices

- Let us now consider the full 1D shaken lattice without offset ($\Delta=0$)

$$
\begin{aligned}
& \tilde{H}(t)=\frac{\hat{p}^{2}}{2 m}+U_{\mathrm{opt}}\left[\hat{x}-x_{0}(t)\right] \\
& \hat{H}(t)=\frac{\hat{p}^{2}}{2 m}+U_{\mathrm{opt}}(\hat{x})-F(t) \hat{x}
\end{aligned}
$$

The shaken optical lattices

- Let us now consider the full 1D shaken lattice without offset $(\Delta=0)$

$$
\tilde{H}(t)=\frac{\hat{p}^{2}}{2 m}+U_{\mathrm{opt}}\left[\hat{x}-x_{0}(t)\right] \quad \hat{H}(t)=\frac{\hat{p}^{2}}{2 m}+U_{\mathrm{opt}}(\hat{x})-F(t) \hat{x}
$$

- In the tight-binding approximation, the Hamiltonian is written as

$$
\hat{H}(t)=-J \sum_{m}(|m\rangle\langle m+1|+\text { h.c. })+\kappa \cos (\omega t+\phi) \sum_{m}|m\rangle m\langle m|,
$$

The shaken optical lattices

- Let us now consider the full 1D shaken lattice without offset ($\Delta=0$)

$$
\tilde{H}(t)=\frac{\hat{p}^{2}}{2 m}+U_{\mathrm{opt}}\left[\hat{x}-x_{0}(t)\right]
$$

$$
\hat{H}(t)=\frac{\hat{p}^{2}}{2 m}+U_{\mathrm{opt}}(\hat{x})-F(t) \hat{x}
$$

- In the tight-binding approximation, the Hamiltonian is written as

$$
\hat{H}(t)=-J \sum_{m}(|m\rangle\langle m+1|+\text { h.c. })+\kappa \cos (\omega t+\phi) \sum_{m}|m\rangle m\langle m|,
$$

- The effective Hamiltonian is exactly given by

$$
\hat{\mathcal{H}}_{\text {eff }}=-J \mathcal{J}_{0}(\kappa / \omega) \sum_{m}(|m\rangle\langle m+1|+\text { h.c. })
$$

The shaken optical lattices

- Let us now consider the full 1D shaken lattice without offset ($\Delta=0$)

$\tilde{H}(t)=\frac{\hat{p}^{2}}{2 m}+U_{\text {opt }}\left[\hat{x}-x_{0}(t)\right]$

$$
\hat{H}(t)=\frac{\hat{p}^{2}}{2 m}+U_{\mathrm{opt}}(\hat{x})-F(t) \hat{x}
$$

- In the tight-binding approximation, the Hamiltonian is written as

$$
\hat{H}(t)=-J \sum_{m}(|m\rangle\langle m+1|+\text { h.c. })+\kappa \cos (\omega t+\phi) \sum_{m}|m\rangle m\langle m|,
$$

- The effective Hamiltonian is exactly given by

$$
\hat{\mathcal{H}}_{\mathrm{eff}}=-J \mathcal{J}_{0}(\kappa / \omega) \sum_{m}(|m\rangle\langle m+1|+\text { h.c. })
$$

- Our goal is to create some fluxes in 2D... impossible by shaking the lattice?

Shaking a 2D optical lattices circularly

- We consider a 2D honeycomb lattice, shaken circularly, in the moving frame

$$
\begin{aligned}
& \hat{H}(t)=\frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}+U_{\text {honey }}(\boldsymbol{x})-\boldsymbol{F}(t) \cdot \hat{\boldsymbol{x}} \\
& \boldsymbol{F}(t)=-F\left[\cos (\omega t) \boldsymbol{e}_{x}+\sin (\omega t) \boldsymbol{e}_{y}\right]
\end{aligned}
$$

Shaking a 2D optical lattices circularly

- We consider a 2D honeycomb lattice, shaken circularly, in the moving frame

$$
\begin{aligned}
& \hat{H}(t)=\frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}+U_{\text {honey }}(\boldsymbol{x})-\boldsymbol{F}(t) \cdot \hat{\boldsymbol{x}} \\
& \boldsymbol{F}(t)=-F\left[\cos (\omega t) \boldsymbol{e}_{x}+\sin (\omega t) \boldsymbol{e}_{y}\right]
\end{aligned}
$$

- The tight-binding Hamiltonian : NN tunneling + shaking

$$
\hat{H}(t)=-J \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k}-\sum_{j} \boldsymbol{F}(t) \cdot \boldsymbol{r}_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j},
$$

Shaking a 2D optical lattices circularly

- We consider a 2D honeycomb lattice, shaken circularly, in the moving frame

$$
\begin{aligned}
& \hat{H}(t)=\frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}+U_{\text {honey }}(\boldsymbol{x})-\boldsymbol{F}(t) \cdot \hat{\boldsymbol{x}} \\
& \boldsymbol{F}(t)=-F\left[\cos (\omega t) \boldsymbol{e}_{x}+\sin (\omega t) \boldsymbol{e}_{y}\right]
\end{aligned}
$$

- The tight-binding Hamiltonian : NN tunneling + shaking

$$
\hat{H}(t)=-J \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k}-\sum_{j} \boldsymbol{F}(t) \cdot \boldsymbol{r}_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j},
$$

- For a strong-driving amplitude $\kappa=F d \sim \omega$, we perform a unitary transformation :

$$
\begin{aligned}
& \hat{R}(t)=\exp \left\{i(F / \omega) \sum_{j} \boldsymbol{r}_{j} \cdot\left[\sin (\omega t) \boldsymbol{e}_{x}-\cos (\omega t) \boldsymbol{e}_{y}\right] \hat{a}_{j}^{\dagger} \hat{a}_{j}\right\} \\
& \rightarrow \hat{\mathcal{H}}(t)=\sum_{n=-\infty}^{\infty} \hat{\mathcal{H}}^{(n)} e^{i n \omega t}, \quad \hat{\mathcal{H}}^{(n)}=-J \mathcal{J}_{n}(\kappa / \omega) \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k} e^{-i n \theta_{j k}}
\end{aligned}
$$

where we have introduced the link-angles : $\boldsymbol{r}_{j}-\boldsymbol{r}_{k}=d\left[\cos \left(\theta_{j k}\right) \boldsymbol{e}_{x}+\sin \left(\theta_{j k}\right) \boldsymbol{e}_{y}\right]$

Shaking a 2D optical lattices circularly

- We have the time-dependent Hamiltonian in the moving frame

$$
\hat{\mathcal{H}}(t)=\sum_{n=-\infty}^{\infty} \hat{\mathcal{H}}^{(n)} e^{i n \omega t}, \quad \hat{\mathcal{H}}^{(n)}=-J \mathcal{J}_{n}(\kappa / \omega) \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k} e^{-i n \theta_{j k}}
$$

- We can calculate the effective Hamiltonian

$$
\hat{\mathcal{H}}_{\text {eff }}=\hat{\mathcal{H}}^{(0)}+\frac{1}{\omega} \sum_{j=1}^{\infty} \frac{1}{j}\left[\hat{\mathcal{H}}^{(j)}, \hat{\mathcal{H}}^{(-j)}\right]+\mathcal{O}\left(1 / \omega^{2}\right)
$$

Shaking a 2D optical lattices circularly

- We have the time-dependent Hamiltonian in the moving frame

$$
\hat{\mathcal{H}}(t)=\sum_{n=-\infty}^{\infty} \hat{\mathcal{H}}^{(n)} e^{i n \omega t}, \quad \hat{\mathcal{H}}^{(n)}=-J \mathcal{J}_{n}(\kappa / \omega) \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k} e^{-i n \theta_{j k}}
$$

- We can calculate the effective Hamiltonian

$$
\hat{\mathcal{H}}_{\mathrm{eff}}=\hat{\mathcal{H}}^{(0)}+\frac{1}{\omega} \sum_{j=1}^{\infty} \frac{1}{j}\left[\hat{\mathcal{H}}^{(j)}, \hat{\mathcal{H}}^{(-j)}\right]+\mathcal{O}\left(1 / \omega^{2}\right)
$$

- To lowest order : nothing very special...

$$
\hat{\mathcal{H}}_{\text {eff }} \approx \hat{\mathcal{H}}^{(0)}=-J \mathcal{J}_{0}(\kappa / \omega) \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k} \quad: \text { the NN tunneling is renormalized }
$$

Shaking a 2D optical lattices circularly

- We have the time-dependent Hamiltonian in the moving frame

$$
\hat{\mathcal{H}}(t)=\sum_{n=-\infty}^{\infty} \hat{\mathcal{H}}^{(n)} e^{i n \omega t}, \quad \hat{\mathcal{H}}^{(n)}=-J \mathcal{J}_{n}(\kappa / \omega) \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k} e^{-i n \theta_{j k}}
$$

- We can calculate the effective Hamiltonian

$$
\hat{\mathcal{H}}_{\mathrm{eff}}=\hat{\mathcal{H}}^{(0)}+\frac{1}{\omega} \sum_{j=1}^{\infty} \frac{1}{j}\left[\hat{\mathcal{H}}^{(j)}, \hat{\mathcal{H}}^{(-j)}\right]+\mathcal{O}\left(1 / \omega^{2}\right)
$$

- To lowest order : nothing very special...

$$
\hat{\mathcal{H}}_{\text {eff }} \approx \hat{\mathcal{H}}^{(0)}=-J \mathcal{J}_{0}(\kappa / \omega) \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k} \quad: \text { the NN tunneling is renormalized }
$$

- The first correction to $\hat{\mathcal{H}}_{\text {eff }}$: NNN complex tunneling terms !

$$
\frac{1}{\omega} \sum_{j=1}^{\infty} \frac{1}{j}\left[\hat{\mathcal{H}}^{(j)}, \hat{\mathcal{H}}^{(-j)}\right] \approx \frac{\sqrt{3} J^{2}}{\omega} \mathcal{J}_{1}^{2}(\kappa / \omega) \sum_{\langle\langle j, k\rangle\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k} e^{ \pm i \pi / 2}
$$

- The effective Hamiltonian $\hat{\mathcal{H}}_{\text {eff }}$ corresponds to the Haldane model !

$$
\hat{H}=-J \sum_{\langle j, k\rangle} \hat{a}_{j}^{\dagger} \hat{a}_{k}+\lambda \sum_{\langle\langle j, k\rangle\rangle} i^{\circlearrowleft} \hat{a}_{j}^{\dagger} \hat{a}_{k}
$$

This experiment was realized at ETH Zurich in the group of T. Esslinger Ref: Jotzu et al. Nature 2014

Combining superlattices and resonant modulation

- We have seen that resonant driving naturally leads to complex coupling elements

Combining superlattices and resonant modulation

- We have seen that resonant driving naturally leads to complex coupling elements

- Kolovsky's idea [EPL '11] : Wannier-Stark-ladder + resonant modulation

1D: $\hat{\mathcal{H}}_{\mathrm{eff}} \approx J \mathcal{J}_{1}\left(K_{0}\right) \sum_{j} \hat{a}_{j+1}^{\dagger} \hat{a}_{j} e^{i \phi}+$ h.c.
2D: $\hat{\mathcal{H}}_{\text {eff }} \approx J \mathcal{J}_{1}\left(K_{0}\right) \sum_{j, k} \hat{a}_{j+1, k}^{\dagger} \hat{a}_{j, k} e^{i \phi(k)}+J \sum_{j, k} a_{j, k+1}^{\dagger} \hat{a}_{j, k}+$ h.c.

Combining superlattices and resonant modulation

- We have seen that resonant driving naturally leads to complex coupling elements

- Kolovsky's idea [EPL '11] : Wannier-Stark-ladder + resonant modulation

1D: $\hat{\mathcal{H}}_{\mathrm{eff}} \approx J \mathcal{J}_{1}\left(K_{0}\right) \sum_{j} \hat{a}_{j+1}^{\dagger} \hat{a}_{j} e^{i \phi}+$ h.c.
2D: $\hat{\mathcal{H}}_{\text {eff }} \approx J \mathcal{J}_{1}\left(K_{0}\right) \sum_{j, k} \hat{a}_{j+1, k}^{\dagger} \hat{a}_{j, k} e^{i \phi(k)}+J \sum_{j, k} a_{j, k+1}^{\dagger} \hat{a}_{j, k}+$ h.c.

- This system would be equivalent to the Harper-Hofstadter model

$$
\begin{aligned}
\hat{H}=-J \sum_{m, n} & \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n} \\
& +e^{i 2 \pi \alpha n} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n}+\text { H.c. }
\end{aligned}
$$

$\alpha=\Phi / \Phi_{0}$: uniform flux per plaquette (in units of flux quantum)

The Munich experiment by Aidelsburger et al. PRL '13 [see also Miyake et al. PRL '13]

- The Wannier-Stark ladder is created by a magnetic field gradient

The Munich experiment by Aidelsburger et al. PRL '13 [see also Miyake et al. PRL '13]

- The Wannier-Stark ladder is created by a magnetic field gradient

- Setting $\left|\boldsymbol{k}_{1}\right|=\left|\boldsymbol{k}_{2}\right|=\pi / 2 d$, the Hamiltonian reads

$$
\hat{H}(t)=-J \sum_{m, n} \hat{a}_{m \pm 1, n}^{\dagger} \hat{a}_{m, n}+\hat{a}_{m, n \pm 1}^{\dagger} \hat{a}_{m, n}+\sum_{m, n} \hat{n}_{m, n}\left\{\omega m+2 \kappa \cos \left[\omega t+\frac{\pi}{2}(m+n)\right]\right\}
$$

The Munich experiment by Aidelsburger et al. PRL '13 [see also Miyake et al. PRL '13]

- The Wannier-Stark ladder is created by a magnetic field gradient

Lattice modulation: 2 running waves

$$
\begin{gathered}
E_{1}(\boldsymbol{r}, t) \sim e^{i\left(\boldsymbol{k}_{1} \cdot \boldsymbol{r}+\omega_{1} t\right)} \longrightarrow \begin{array}{l}
V_{\mathrm{mod}}(\boldsymbol{r}, t)=2 \kappa \cos (\omega t+\boldsymbol{q} \cdot \boldsymbol{r}) \\
E_{2}(\boldsymbol{r}, t) \sim e^{i\left(\boldsymbol{k}_{2} \cdot \boldsymbol{r}+\omega_{2} t\right)} \\
\boldsymbol{q}=\boldsymbol{k}_{1}-\boldsymbol{k}_{2} \\
\omega=\omega_{1}-\omega_{2}=\Delta
\end{array} \\
\begin{array}{l}
\omega=0
\end{array}
\end{gathered}
$$

- Setting $\left|\boldsymbol{k}_{1}\right|=\left|\boldsymbol{k}_{2}\right|=\pi / 2 d$, the Hamiltonian reads
$\hat{H}(t)=-J \sum_{m, n} \hat{a}_{m \pm 1, n}^{\dagger} \hat{a}_{m, n}+\hat{a}_{m, n \pm 1}^{\dagger} \hat{a}_{m, n}+\sum_{m, n} \hat{n}_{m, n}\left\{\omega m+2 \kappa \cos \left[\omega t+\frac{\pi}{2}(m+n)\right]\right\}$
- The effective Hamiltonian is given by the Harper-Hofstadter form

$$
\begin{aligned}
& \hat{\mathcal{H}}_{\text {eff }}=-\sum_{m, n} J_{x} \hat{a}_{m+1, n}^{\dagger} \hat{a}_{m, n} e^{i \Phi n}+J_{y} \hat{a}_{m, n+1}^{\dagger} \hat{a}_{m, n}+\text { h.c. } \\
& J_{x}=J \mathcal{J}_{1}\left(\frac{2 \sqrt{2} \kappa}{\omega}\right), J_{y}=J \mathcal{J}_{0}\left(\frac{2 \sqrt{2} \kappa}{\omega}\right), \quad \Phi=\frac{\pi}{2}\left(=q_{y} d\right)
\end{aligned}
$$

Schemes leading to spin-orbit coupling? Physics of topological insulators?

- The Munich setup : two internal states $|\uparrow, \downarrow\rangle$ with opposite magnetic moment

The synthetic gauge potential equivalent to a spin-orbit-coupling effect:

$$
\boldsymbol{A}_{\mathrm{eff}}=\left(-B_{\mathrm{eff}} y, 0,0\right) \longrightarrow \boldsymbol{A}_{\mathrm{eff}}=\hat{\sigma}_{z}\left(-B_{\mathrm{eff}} y, 0,0\right)
$$

It is the form required to observe the quantum spin Hall effect
[see Bernevig \& Zhang PRL '06; also Kane \& Mele PRL '05]

Schemes leading to spin-orbit coupling? Physics of topological insulators?

- The Munich setup : two internal states $|\uparrow, \downarrow\rangle$ with opposite magnetic moment

The synthetic gauge potential equivalent to a spin-orbit-coupling effect:

$$
\boldsymbol{A}_{\mathrm{eff}}=\left(-B_{\mathrm{eff}} y, 0,0\right) \longrightarrow \boldsymbol{A}_{\mathrm{eff}}=\hat{\sigma}_{z}\left(-B_{\mathrm{eff}} y, 0,0\right)
$$

It is the form required to observe the quantum spin Hall effect
[see Bernevig \& Zhang PRL '06; also Kane \& Mele PRL '05]

- Is it possible to generate a Rashba spin-orbit coupling: $\hat{H}_{\mathrm{R}}=\lambda_{\mathrm{R}}\left(\hat{p}_{x} \hat{\sigma}_{x}+\hat{p}_{y} \hat{\sigma}_{y}\right)$

Schemes leading to spin-orbit coupling? Physics of topological insulators?

- The Munich setup : two internal states $|\uparrow, \downarrow\rangle$ with opposite magnetic moment

The synthetic gauge potential equivalent to a spin-orbit-coupling effect: $\boldsymbol{A}_{\mathrm{eff}}=\left(-B_{\mathrm{eff}} y, 0,0\right) \longrightarrow \boldsymbol{A}_{\mathrm{eff}}=\hat{\sigma}_{z}\left(-B_{\mathrm{eff}} y, 0,0\right)$

It is the form required to observe the quantum spin Hall effect
[see Bernevig \& Zhang PRL '06; also Kane \& Mele PRL '05]

- Is it possible to generate a Rashba spin-orbit coupling: $\hat{H}_{\mathrm{R}}=\lambda_{\mathrm{R}}\left(\hat{p}_{x} \hat{\sigma}_{x}+\hat{p}_{y} \hat{\sigma}_{y}\right)$
- We apply the effective Hamiltonian formula for $\hat{H}(t)=\hat{H}_{0}+\hat{A} \cos (\omega t)+\hat{B} \sin (\omega t)$

$$
\begin{aligned}
\hat{H}_{\mathrm{eff}} & =\hat{H}_{0}+\frac{1}{\omega} \sum_{j=1}^{\infty} \frac{1}{j}\left[\hat{V}^{(j)}, \hat{V}^{(-j)}\right]+\ldots \\
& =\hat{H}_{0}+\frac{i}{2 \omega}[\hat{A}, \hat{B}]+\ldots
\end{aligned}
$$

- A possible solution : $\hat{H}_{0}=\frac{\hat{p}^{2}}{2 m}, \hat{A}=\frac{\hat{p}_{x}^{2}-\hat{p}_{y}^{2}}{2 m}, \hat{B}=\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right)$

$$
\hat{H}_{\text {eff }}=\frac{\hat{p}^{2}}{2 m}+\lambda_{\mathrm{R}}\left(\hat{p}_{x} \hat{\sigma}_{x}+\hat{p}_{y} \hat{\sigma}_{y}\right), \quad \text { with the Rashba strength }: \lambda_{\mathrm{R}}=\frac{\kappa}{2 m \omega}
$$

Schemes leading to Rashba spin-orbit coupling? [Goldman-Dalibard PRX '14]

- A possible solution : $\hat{H}_{0}=\frac{\hat{p}^{2}}{2 m}, \hat{A}=\frac{\hat{p}_{x}^{2}-\hat{p}_{y}^{2}}{2 m}, \hat{B}=\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right)$

$$
\hat{H}_{\mathrm{eff}}=\frac{\hat{p}^{2}}{2 m}+\lambda_{\mathrm{R}}\left(\hat{p}_{x} \hat{\sigma}_{x}+\hat{p}_{y} \hat{\sigma}_{y}\right), \quad \text { with the Rashba strength }: \lambda_{\mathrm{R}}=\frac{\kappa}{2 m \omega}
$$

- In practice? We approximate the driving $\hat{A} \cos (\omega t)+\hat{B} \sin (\omega t)$ by square waves

$$
\begin{aligned}
& \begin{array}{l}
\hat{A}=\frac{\hat{p}_{x}^{2}-\hat{p}_{y}^{2}}{2 m} \\
\hat{B}=\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right)
\end{array}
\end{aligned}
$$

- It corresponds to the following repeated sequence

$$
\left\{\frac{\hat{p}_{x}^{2}}{m}, \frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}+\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right), \frac{\hat{p}_{y}^{2}}{m}, \frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}-\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right)\right\} .
$$

Schemes leading to Rashba spin-orbit coupling? [Goldman-Dalibard PRX '14]

- A possible solution : $\hat{H}_{0}=\frac{\hat{p}^{2}}{2 m}, \hat{A}=\frac{\hat{p}_{x}^{2}-\hat{p}_{y}^{2}}{2 m}, \hat{B}=\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right)$

$$
\hat{H}_{\mathrm{eff}}=\frac{\hat{p}^{2}}{2 m}+\lambda_{\mathrm{R}}\left(\hat{p}_{x} \hat{\sigma}_{x}+\hat{p}_{y} \hat{\sigma}_{y}\right), \quad \text { with the Rashba strength }: \lambda_{\mathrm{R}}=\frac{\kappa}{2 m \omega}
$$

- In practice? We approximate the driving $\hat{A} \cos (\omega t)+\hat{B} \sin (\omega t)$ by square waves

$$
\underbrace{\hat{V}(t)}_{0} \begin{array}{|cccc}
+\hat{A}+\hat{B}-\hat{A} & -\hat{B}+\hat{A}+\hat{B} & & \hat{A}=\frac{\hat{p}_{x}^{2}-\hat{p}_{y}^{2}}{2 m} \\
\ldots & & t & \hat{B}=\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right)
\end{array}
$$

- It corresponds to the following repeated sequence

$$
\left\{\frac{\hat{p}_{x}^{2}}{m}, \frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}+\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right), \frac{\hat{p}_{y}^{2}}{m}, \frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}-\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right)\right\} .
$$

- Physical realization : a pulsed optical lattice with space-dependent magnetic field $\hat{H}_{0}=\hat{T}_{x}+\hat{T}_{y}$ (where $T_{x, y}$: hopping terms $\sim J$, with $J \ll \omega$ bounded!)

$$
\text { sequence : }\left\{2 \hat{T}_{x}, \hat{H}_{0}+\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right), 2 \hat{T}_{y}, \hat{H}_{0}-\kappa\left(\hat{x} \hat{\sigma}_{x}-\hat{y} \hat{\sigma}_{y}\right)\right\}
$$

Some final remarks about energy scales

- Consider a standard optical lattice (retro-reflected laser light)

$$
V(x)=U_{0} \cos ^{2}(k x), \quad \text { laser wavelength : } \lambda=2 \pi / k, \text { lattice spacing : } d=\lambda / 2
$$

- The energy scales on the lattice are set by the recoil energy

$$
E_{\mathrm{R}}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{h^{2}}{8 m d^{2}}, \quad E_{\mathrm{R}} / h \sim 10 \mathrm{kHz} \longrightarrow E_{\mathrm{R}} / k_{\mathrm{B}} \sim 100 \mathrm{nK}
$$

- The amplitude of tunneling matrix elements is well approximated by

$$
\begin{aligned}
J & =\frac{4 E_{\mathrm{R}}}{\sqrt{\pi}}\left(\frac{U_{0}}{E_{\mathrm{R}}}\right)^{3 / 4} \exp \left[-2\left(\frac{U_{0}}{E_{\mathrm{R}}}\right)^{1 / 2}\right] \\
& \sim 0.01-0.1 E_{\mathrm{R}} \quad \text { in the tight-binding regime }
\end{aligned}
$$

- Consider a standard optical lattice (retro-reflected laser light)

$$
V(x)=U_{0} \cos ^{2}(k x), \quad \text { laser wavelength : } \lambda=2 \pi / k, \text { lattice spacing : } d=\lambda / 2
$$

- The energy scales on the lattice are set by the recoil energy

$$
E_{\mathrm{R}}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{h^{2}}{8 m d^{2}}, \quad E_{\mathrm{R}} / h \sim 10 \mathrm{kHz} \longrightarrow E_{\mathrm{R}} / k_{\mathrm{B}} \sim 100 \mathrm{nK}
$$

- The amplitude of tunneling matrix elements is well approximated by

$$
\begin{aligned}
J & =\frac{4 E_{\mathrm{R}}}{\sqrt{\pi}}\left(\frac{U_{0}}{E_{\mathrm{R}}}\right)^{3 / 4} \exp \left[-2\left(\frac{U_{0}}{E_{\mathrm{R}}}\right)^{1 / 2}\right] \\
& \sim 0.01-0.1 E_{\mathrm{R}} \quad \text { in the tight-binding regime }
\end{aligned}
$$

- The topological gaps (e.g. Harper-Hofstadter model) :

$$
\Delta_{\text {top }} \sim J \longrightarrow \Delta_{\text {top }} / k_{\mathrm{B}} \sim 10 \mathrm{nK} \longrightarrow \text { very cold !!! }
$$

- Consider a standard optical lattice (retro-reflected laser light)

$$
V(x)=U_{0} \cos ^{2}(k x), \quad \text { laser wavelength : } \lambda=2 \pi / k, \text { lattice spacing : } d=\lambda / 2
$$

- The energy scales on the lattice are set by the recoil energy

$$
E_{\mathrm{R}}=\frac{\hbar^{2} k^{2}}{2 m}=\frac{h^{2}}{8 m d^{2}}, \quad E_{\mathrm{R}} / h \sim 10 \mathrm{kHz} \longrightarrow E_{\mathrm{R}} / k_{\mathrm{B}} \sim 100 \mathrm{nK}
$$

- The amplitude of tunneling matrix elements is well approximated by

$$
\begin{aligned}
J & =\frac{4 E_{\mathrm{R}}}{\sqrt{\pi}}\left(\frac{U_{0}}{E_{\mathrm{R}}}\right)^{3 / 4} \exp \left[-2\left(\frac{U_{0}}{E_{\mathrm{R}}}\right)^{1 / 2}\right] \\
& \sim 0.01-0.1 E_{\mathrm{R}} \quad \text { in the tight-binding regime }
\end{aligned}
$$

- The topological gaps (e.g. Harper-Hofstadter model) :

$$
\Delta_{\text {top }} \sim J \longrightarrow \Delta_{\text {top }} / k_{\mathrm{B}} \sim 10 \mathrm{nK} \longrightarrow \text { very cold !!! }
$$

- Would it be possible to increase all energy scales ?

Sub-wavelength lattices : $d_{\text {new }} \ll d=\lambda / 2 \longrightarrow \tilde{E}_{\mathrm{R}}=\frac{h^{2}}{8 m\left(d_{\mathrm{new}}\right)^{2}} \gg E_{\mathrm{R}}=\frac{h^{2}}{8 m d^{2}}$

Some remarks about energy scales, temperature requirements

- Would it be possible to increase all energy scales?

Sub-wavelength lattices : $d_{\text {new }} \ll d=\lambda / 2 \longrightarrow \tilde{E}_{\mathrm{R}}=\frac{h^{2}}{8 m\left(d_{\text {new }}\right)^{2}} \gg E_{\mathrm{R}}=\frac{h^{2}}{8 m d^{2}}$

- Idea based on time-modulated systems [Nascimbene et al., to appear in PRL '15]

Some remarks about energy scales, temperature requirements

- Would it be possible to increase all energy scales?

Sub-wavelength lattices : $d_{\text {new }} \ll d=\lambda / 2 \longrightarrow \tilde{E}_{\mathrm{R}}=\frac{h^{2}}{8 m\left(d_{\text {new }}\right)^{2}} \gg E_{\mathrm{R}}=\frac{h^{2}}{8 m d^{2}}$

- Idea based on time-modulated systems [Nascimbene et al., to appear in PRL '15]

Some remarks about energy scales, temperature requirements

- Would it be possible to increase all energy scales ?

Sub-wavelength lattices : $d_{\text {new }} \ll d=\lambda / 2 \longrightarrow \tilde{E}_{\mathrm{R}}=\frac{h^{2}}{8 m\left(d_{\mathrm{new}}\right)^{2}} \gg E_{\mathrm{R}}=\frac{h^{2}}{8 m d^{2}}$

- Idea based on time-modulated systems [Nascimbene et al., to appear in PRL '15]

- In practice : we propose to use a moving spin-dependent lattice

$$
\begin{aligned}
& V(x, t)=V_{\mathrm{L}} \cos (2 k x-\omega t) \hat{\sigma}_{z}+V_{\mathrm{B}} \cos (N \omega t) \hat{\sigma}_{x}, \quad N \in \mathbb{N} \\
& \hat{H}_{\text {eff }}=\frac{p^{2}}{2 m}+\frac{U_{\text {eff }}}{2} \cos (2 N k x) \hat{\sigma}_{x}, \quad U_{\text {eff }}=\mathcal{J}_{N}\left(\frac{2 V_{\mathrm{L}}}{\hbar \omega}\right) V_{\mathrm{B}},
\end{aligned}
$$

- This generates a lattice of spacing $d_{\text {new }}=d / N$, where $N \in \mathbb{N}$.

Some remarks about energy scales, temperature requirements

- Would it be possible to increase all energy scales ?

Sub-wavelength lattices : $d_{\text {new }} \ll d=\lambda / 2 \longrightarrow \tilde{E}_{\mathrm{R}}=\frac{h^{2}}{8 m\left(d_{\text {new }}\right)^{2}} \gg E_{\mathrm{R}}=\frac{h^{2}}{8 m d^{2}}$

- Idea based on time-modulated systems [Nascimbene et al., to appear in PRL '15]

- In practice : we propose to use a moving spin-dependent lattice

$$
\begin{aligned}
& V(x, t)=V_{\mathrm{L}} \cos (2 k x-\omega t) \hat{\sigma}_{z}+V_{\mathrm{B}} \cos (N \omega t) \hat{\sigma}_{x}, \quad N \in \mathbb{N} \\
& \hat{H}_{\text {eff }}=\frac{p^{2}}{2 m}+\frac{U_{\text {eff }}}{2} \cos (2 N k x) \hat{\sigma}_{x}, \quad U_{\text {eff }}=\mathcal{J}_{N}\left(\frac{2 V_{\mathrm{L}}}{\hbar \omega}\right) V_{\mathrm{B}},
\end{aligned}
$$

- This generates a lattice of spacing $d_{\text {new }}=d / N$, where $N \in \mathbb{N}$.
- Can be extended in 2D to create Chern bands...

