
T-duality II: Applications
Felix Rennecke1

Abstract

This second part of two talks aims to apply T-Duality to open strings. A
non-trivial example with intersecting branes leads to non-commutative geometry
on the worldvolume of D-branes.
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1 T-duality and open strings

As mentioned in the first talk, a boundary term has to be added if the worldsheet has
∂Σ 6= ∅ in order to restore gauge invariance; the sigma model reads

S =
1

4πα′

{∫
Σ

[
G(X)ab dX

a ∧ ?dXb +B(X)ab dX
a ∧ dXb

]
+

∫
∂Σ

Aa dX
a

}
. (1.1)

The conventions for the worldsheet are as follows: We assume conformal gauge, i.e.
the worldsheet metric takes the form h = diag(−1, 1). The coordinates on Σ are {τ, σ}
with σ ∈ [0, π] and the volume element is dτ ∧ dσ. By the definition of the Hodge star
α ∧ ?β = h(α, β)dτ ∧ dσ for α, β arbitrary n-forms we have in particular ?dτ = −dσ
and ?dσ = −dτ . The equations of motion remain the same, i.e.

d ? dXa + Γabc dX
b ∧ ?dXc = 1

2
GamHmbc dX

b ∧ dXc , (1.2)

but are supplemented by the boundary conditions∫
∂Σ

(
Gab ?dX

b + Fab dX
b
)
δXa = 0 (1.3)

with F = B + dA. If we assume that the variation and all the fields vanish at infinite
times τ and use the conventions on the worldsheet one possible boundary condition is(

∂σX
a −GamFmb ∂τX

b
)∣∣
σ=0,π

= 0 (1.4)
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with Gab the components of the inverse metric. Of course, we can also have Dirichlet
boundary conditions

δXa|σ=0,π = 0 =⇒ ∂τX
a|σ=0,π = 0 (1.5)

or mixtures of the two. We see that F interpolates between Neumann and Dirichlet
boundary conditions.

The spacetime symmetries are

• B-field gauge transformations

B → B + dξ with A→ A− ξ for ξ ∈ Γ(T ∗M) , (1.6)

• diffeomorphisms infinitesimally generated by the vector field k, if

LkG = 0 , LkF = 0⇐⇒
{
LkB = dν
LkA = dg − ν

}
(1.7)

for g ∈ C∞(M) and ν ∈ Γ(T ∗M).

Now we recapitulate the gauged sigma model. The condition on the gauge invariant
field strength F = B + dA means that if we write the boundary term in the action as∫
∂Σ
X∗A =

∫
Σ
X∗(dA) and combine it with the B-field, the action can be gauged via

minimal coupling to the abelian gauge field A with δA = −dε if Xa → Xa + εka. As
was done last time, we assume adapted coordinates k = ∂/∂X0 and gauge-fix A to
A− dX0. Then the gauged sigma model is

Sg =
1

4πα′

∫
Σ

[
Gmn dX

m ∧ ?dXn + Fmn dX
m ∧ dXn + 2 dλ ∧ dX0

G00A ∧ ?A+ 2G0mA ∧ ?dXm + 2F0mA ∧ dXm +−2 dλ ∧ A
] (1.8)

with m,n 6= 0 and G as well as F independent of X0 by (1.7). The dual actions arise
as follows.

• As before, we get back to the original model S(X;G,F ) by integrating-out λ.
This gives dA = 0. The difference to the general discussion of the last talk is
that now we already gauge-fixed A in order to write the gauged sigma model
as above. Hence we cannot perform another gauge transformation such that it
vanishes, but we solve the EOM by setting

A = dX0 . (1.9)

In this way we get back the initial model by identifying the flat gauge field with
the initial coordinate along which we dualise. Of course, consistency requires the
same treatment of global issues as last time.

2



• The dual action is obtained by integrating-out A; its EOM is

?A = − 1

G00

(G0m ?dX
m + F0mdX

m + dλ) . (1.10)

Plugging this back into the action and introducing the dual coordinate

dλ ≡ dX̃0, (1.11)

we obtain the dual sigma model S(X̃; g, f) with metric and field strength given
by the Buscher rules

g00 =
1

G00

, g0m = −F0m

G00

, gmn = Gmn −
Gm0G0n + Fm0F0n

G00

f0m = −G0m

G00

, fmn = Fmn −
Gm0F0n + Fm0G0n

G00

.

(1.12)

Not only the background changes, but also the coordinates X0 to X̃0. Nn-shell the
EOM (1.10) give a precise relation: If we recall that A = dX0 solves the λ-EOM and

that λ ≡ X̃0, (1.10) can be rewritten as

dX̃0 = G0a ?dX
a + F0a dX

a . (1.13)

The right-hand side is the conserved current to the isometry X0 → X0+ε, i.e. T-duality
interchanges coordinates with conserved currents. Let us be more explicit.

1.1 Flat backgrounds

We assume the spacetime to be flat (compact or non-compact) with metric G = δ and
F = 0. Then the EOM for the pulled-back coordinates (1.2) become the wave equation
d ? dXa = 0. The easiest way to solve it is to introduce light-cone coordinates σ± =
τ ±σ; then the EOM is ∂+∂−X

a = 0 which is solved by Xa(τ, σ) = Xa
L(σ−) +Xa

R(σ+).
In this simple case the coordinate relation (1.13) can be integrated and we see three
basic and well-known features of T-duality on these backgrounds:

• It reflects the right-movers: The integrated coordinate relation gives

X̃0
L = X0

L and X̃0
R = −X0

R . (1.14)

This shows that for this simple background T-duality reflects the right-moving
coordinate; for a general constant background we obtain X̃0

L/R = (F0a±G0a)X
a
L/R.

The dual background is the same, i.e. g = δ and f = 0.
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• It changes the boundary conditions: Along X0 we could either start with
Neumann boundar conditions ∂σX

0|σ=0,π (since F = 0) or with Dirichlet bound-
ary conditions ∂τX

0|σ=0,π. Using ∂τ/σ = 1
2
(∂+ ± ∂−) they can be translated into

conditions on the left- and right-mover with the following effect of T-duality

∂−X
0
L = ∂+X

0
R (Neumann)

∂−X
0
L = −∂+X

0
R (Dirichlet)

}
T-duality−−−−−→

{
∂−X̃

0
L = −∂+X̃

0
R (Dirichlet)

∂−X̃
0
L = ∂+X̃

0
R (Neumann)

,

i.e. T-duality interchanges the boundary conditions in this simple case (∂τX
0 ↔

∂σX
0). This is how D-branes have been discovered: Dirichlet boundary condi-

tions have been neglected because the fixing of string endpoints breaks Lorentz
invariance, but with duality they arise inevitably. In general, T-duality along
a direction of a Dp-brane gives a D(p− 1)-brane and a perpendicular T-duality
gives a D(p+ 1)-brane.

• It interchanges momentum and winding: Since the worldsheet is two-
dimensional we can introduce a canonical winding analogous to the canonical
momentum. Here this means

P0 =
∂L

∂∂τX0
=
−1

2πα′
∂τX

0

W0 =
∂L

∂∂σX0
=

1

2πα′
∂σX

0

(1.15)

We saw that T-duality exchanges τ - and σ-derivatives. Thus it also interchanges
momentum and winding. The contribution of momentum and winding to the
zero-modes of the mode expansion of the coordinate fields is via pa =

∫ π
0
dσPa

and wa =
∫ π

0
dσWa.

Hence, the coordinate relation (1.13) allows to recover the standard facts about T-
duality, but we also see that they are only true in special cases. Generalising the above
to arbitrary constant backgrounds is straight-forward. For non-constant backgrounds
it is not clear when (1.13) can be integrated and if the result can be interpreted as a
coordinate. This is yet another incarnation of the global issues discussed before.

1.2 Example: branes at angles

We follow [1, 2]. Consider the simple background from the last section which is assumed
to have dimension 2. Additionally, we place a D1-brane in the (X0, X1)-plane of space-
time. The easiest way would be to place it along the X0-direction; this would amount
to choosing Dirichlet along X1 (∂τX

1|∂Σ = 0) and Neumann along X0 (∂σX
0|∂Σ = 0).

However, the aim is to perform T-duality neither entirely along nor perpendicular to
the brane. Therefore we place it at an angle φ compared to X1. This is realised by
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choosing Neumann boundary conditions along this direction and Dirichlet boundary
conditions perpendicular: (

cosφ ∂σX
0 + sinφ ∂σX

1
)∣∣
∂Σ

= 0(
− sinφ ∂τX

0 + cosφ ∂τX
1
)∣∣
∂Σ

= 0 .
(1.16)

We perform T-duality along the X1-direction; this reflects the right-mover, causing the
interchange of the τ - and σ-derivative. Then the T-dual boundary conditions are(

∂σX
0 + tanφ ∂τX

1
)∣∣
∂Σ

= 0(
∂σX

1 − tanφ ∂τX
0
)∣∣
∂Σ

= 0 .
(1.17)

Comparison with (1.4) shows that this is the boundary conditions in the presence of a
field strength

F = −1
2

tanφ dX0 ∧ dX1 ; (1.18)

thus the D1-brane at angle has become a magnetized D2-brane by T-duality.
We have just generated a field strength from a pure metric background. As was

discussed in the prior section, the Buscher rules do not give a change in background
here and in particular no F -field – this seems to contradict the above observation of a
field strength appearing in the boundary conditions. However, a constant field strength
can (up to global issues) considered as living on the boundary via FabdX

a ∧ dXb =
d(FabX

adXb).

Symmetric versus asymmetric rotations

There is a nice and handy way of interpreting the change in boundary conditions.
Suppose that we start with a D1-brane in X0-direction, i.e. ∂+X

0
L = ∂−X

0
R and

∂+X
1
L = −∂−X0

R. Then we obtain (1.16) by a symmetric rotation of left- and right-
movers as follows:

∂+X̃
0
L = ∂−X̃

0
R

∂+X̃
1
L = −∂−X̃0

R

with X̃L/R = RXL/R and XL/R =

(
X0
L/R

X1
L/R

)
, (1.19)

where the rotation is given by

R =

(
cosφ sinφ
− sinφ cosφ

)
. (1.20)

Then, applying a T-duality gives the magnetised D2-brane as above.
However, we can also perform a T-duality to the D1-brane along X0 first, to obtain

the dual boundary conditions ∂+X
0
L = ∂−X

0
R and ∂+X

1
L = ∂−X

0
R from reflecting X1

R;
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this is a D2-brane without flux. We then obtain the same magnetised brane if we now
perform an asymmetric rotation as follows:

∂+X̃
0
L = ∂−X̃

0
R

∂+X̃
1
L = ∂−X̃

0
R

with X̃L = RXL and X̃R = Rt XR . (1.21)

Thus the picture is as follows:

D1-brane
along X0

D1-brane
at angle

plain
D2-brane

magnetised
D2-brane

TX1

LR-symmetric rot.

TX1

LR-asymmetric rot.

We conclude that T-duality maps a left-right-symmetric rotation to a left-right-antisymmetric
rotation. This is a very convenient way of introducing a field strength into the model.

2 Non-commutative geometry on D-branes

The aim is to study the commutator algebra of the coordinate fields X0 and X1 on a
magnetised D2-brane via CFT. The first thing we need is the propagator 〈Xa(z1), Xb(z2)〉,
but because of the complicated boundary conditions (1.17) it is difficult to derive.2

However, by the observations made above we can also start from a plain D2-brane, i.e.
with simple Neumann boundary conditions for both directions and at both ends of the
string and then simply perform an LR-asymmetric rotation (see [1, 2] and the lecture
notes [3]).

The propagator is the fundamental solution (or Greens function) to the wave equa-
tion respecting the NN boundary conditions ∂Xa(z)|∂Σ = ∂̄Xa(z)|∂Σ. The worldsheet
Σ is the upper half plane in this picture with the real line its boundary. Thus, skipping
details, the method of mirror charges gives the result

〈Xa(z1)Xb(z2)〉 = −α′ δab (ln |z1 − z2|+ ln |z1 − z̄2|)
= −α′

2
δab
[
ln(z1 − z2)︸ ︷︷ ︸
〈Xa

LX
a
L〉

+ ln(z̄2 − z̄2)︸ ︷︷ ︸
〈Xa

RX
a
R〉

+ ln(z1 − z̄2)︸ ︷︷ ︸
〈Xa

LX
a
R〉

+ ln(z̄1 − z2)︸ ︷︷ ︸
〈Xa

RX
a
L〉

]
.

The split Xa(z, z̄) = Xa
L(z) + Xa

R(z̄) is indicated. Now a constant field strength is

introduced easily by the above asymmetric rotation of left- and right-movers via X̃L =

2The complex coordinates z arise from the light-cone coordinates by a Wick rotation and expo-
nentiation.
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RXL and X̃R = RtXR respectively. With the basic propagators given above we easily
obtain

〈X̃a(z1)X̃b(z2)〉 =− α′ δab
[
ln |z1 − z2| −

(
sin2 θ − cos2 θ

)
ln |z1 − z̄2|

]
− α′ εab sin θ cos θ ln

(
z1 − z̄2

z̄1 − z2

)
.

(2.1)

Now the value of the logarithm in the second line depends on the branch cut chosen.
Since Σ is the upper half plane, it makes sense to put a branch cut at the negative
imaginary axis which makes the propagator single-valued on the upper half plane.
Open string vertex operators are inserted at the boundary of the worldsheet; thus we
restrict the result to the real line ∂Σ = R via zi = z̄i = ti. Also introducing the field
strength tanφ = −F01 ≡ F we obtain

〈X̃a(t1)X̃b(t2)〉 = −Gab ln |z1 − z̄2|+ i
2
θab ε(t1 − t2) , (2.2)

where ε(t) = ±1 for t >< 0 arises from the branch of the logarithm. Moreover, we defined

Gab =
2α′

1 + F 2
δab and θab = 2πα′

F

1 + F 2
εab . (2.3)

The interesting part is the antisymmetric part of the propagator: it distinguishes the
order of the inserted operators which causes them to be non-commutative. This can
be seen in a sloppy manner by evaluating the commutator at equal positions. Recall
that the correlators have to be considered inside the path-integral and radially ordered
(this is what time ordering became in the present coordinates). Then we compute

〈[X̃0(t), X̃1(t)]〉 = lim
δ→0

[
〈X̃0(t)X̃1(t+ δ)− X̃1(t)X̃2(t+ δ)〉

]
= i

2
θ01 − i

2
θ10 = i θ01 ;

(2.4)

thus we have just derived that the coordinates on equal worldvolume-points of a mag-
netised D2-brane are non-commutative with

[X̃0(t), X̃1(t)
]

= 2πiα′
F

1 + F 2
. (2.5)

Indeed, it can be shown that the introduction of a constant field strength F on the
brane is equivalent to having a pure metric background with the algebra of smooth
functions on the brane deformed by the Moyal-Weyl product

(f ? g)(x) = exp
(
i
2
θab ∂

∂xa1

∂
∂xb2

)
f(x1) g(x2)

∣∣∣
x1=x2=x

, (2.6)

provided the Seiberg-Witten limit α′ → 0 (in a certain manner; see [4]) is taken.
Applied to coordinates, this product reproduces the commutator above: [x0, x1] =
x0 ? x1 − x1 ? x0 = iθ01. With this product the gauge theory on the magnetised brane
is equivalent to non-commutative gauge theory on a plane brane. This was discovered
in [4]

In summary we have seen how T-duality applied to branes at angles gives rise to
branes with non-commutative worldvolume-coordinates.
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